Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Herrera-Rocha, F.; León-Inga, A. M.; Aguirre Mejía, J. L.; Rodríguez-López, C. M.; Chica, M. J.; Wessjohann, L. A.; González Barrios, A. F.; Cala, M. P.; Fernández-Niño, M.;Bioactive and flavor compounds in cocoa liquor and their traceability over the major steps of cocoa post-harvesting processesFood Chem.435137529(2024)DOI: 10.1016/j.foodchem.2023.137529
The production of fine-flavor cocoa represents a promising avenue to enhance socioeconomic development in Colombia and Latin America. Premium chocolate is obtained through a post-harvesting process, which relies on semi-standardized techniques. The change in the metabolic profile during cocoa processing considerably impacts flavor and nutraceutical properties of the final product. Understanding this impact considering both volatiles and non-volatile compounds is crucial for process and product re-engineering of cocoa post-harvesting. Consequently, this work studied the metabolic composition of cocoa liquor by untargeted metabolomics and lipidomics. This approach offered a comprehensive view of cocoa biochemistry, considering compounds associated with bioactivity and flavor in cocoa liquor. Their variations were traced back over the cocoa processing (i.e., drying, and roasting), highlighting their impact on flavor development and the nutraceutical properties. These results represent the basis for future studies aimed to re-engineer cocoa post-harvesting considering the variation of key flavor and bioactive compounds over processing.
Publikation
Otify, A. M.; Ibrahim, R. M.; Abib, B.; Laub, A.; Wessjohann, L. A.; Jiang, Y.; Farag, M. A.;Unveiling metabolome heterogeneity and new chemicals in 7 tomato varieties via multiplex approach of UHPLC-MS/MS, GC–MS, and UV–Vis in relation to antioxidant effects as analyzed using molecular networking and chemometricsFood Chem.417135866(2023)DOI: 10.1016/j.foodchem.2023.135866
Tomatoes show diverse phytochemical attributes that contribute to their nutritive and health values. This study comprehensively dissects primary and secondary metabolite profiles of seven tomato varieties. UHPLC-qTOF-MS assisted molecular networking was used to monitor 206 metabolites, 30 of which were first-time to be reported. Flavonoids, as valuable antioxidants, were enriched in light-colored tomatoes (golden sweet, sun gold, and yellow plum) versus high tomatoside A, an antihyperglycemic saponin, in cherry bomb and red plum varieties. UV–Vis analysis revealed similar results with a strong absorbance corresponding to rich phenolic content in light varieties. GC–MS unveiled monosaccharides as the main contributors to samples’ segregation, found abundant in San Marzano tomato accounting for its sweet flavor. Fruits also demonstrated potential antioxidant activities in correlation to their flavonoids and phospholipids. This work provides a complete map of tomatoes’ metabolome heterogeneity for future breeding programs and a comparative approach utilizing different metabolomic platforms for tomato analysis.
Publikation
Abdel Shakour, Z. T.; El-Akad, R. H.; Elshamy, A. I.; El Gendy, A. E.-N. G.; Wessjohann, L. A.; Farag, M. A.;Dissection of Moringa oleifera leaf metabolome in context of its different extracts, origin and in relationship to its biological effects as analysed using molecular networking and chemometricsFood Chem.399133948(2023)DOI: 10.1016/j.foodchem.2022.133948
M. oleifera known as “miracle tree” is increasingly used in nutraceuticals for the reported health effects and nutritional value of its leaves. This study presents the first metabolome profiling of M. oleifera leaves of African origin using different solvent polarities via HR-UPLC/MS based molecular networking followed by multivariate data analyses for samples classification. 119 Chemicals were characterized in both positive and negative modes belonging to 8 classes viz. phenolic acids, flavonoids, peptides, fatty acids/amides, sulfolipids, glucosinolates and carotenoids. New metabolites i.e., polyphenolics, fatty acids, in addition to a new class of sulfolipids were annotated for the first time in Moringa leaves. In vitro anti-inflammatory and anti-aging bioassays of the leaf extracts were assessed and in correlation to their metabolite profile via multivariate data analyses. Kaempferol, quercetin and apigenin-O/C-glycosides, fatty acyl amides and carotenoids appeared crucial for biological activities and leaves origin discrimination.
Publikation
Herrera-Rocha, F.; Cala, M. P.; León-Inga, A. M.; Aguirre Mejía, J. L.; Rodríguez-López, C. M.; Florez, S. L.; Chica, M. J.; Olarte, H. H.; Duitama, J.; González Barrios, A. F.; Fernández-Niño, M.;Lipidomic profiling of bioactive lipids during spontaneous fermentations of fine-flavor cocoaFood Chem.397133845(2022)DOI: 10.1016/j.foodchem.2022.133845
The impact of cocoa lipid content on chocolate quality has been extensively described. Nevertheless, few studies have elucidated the cocoa lipid composition and their bioactive properties, focusing only on specific lipids. In the present study the lipidome of fine-flavor cocoa fermentation was analyzed using LC-MS-QTOF and a Machine Learning model to assess potential bioactivity was developed. Our results revealed that the cocoa lipidome, comprised mainly of fatty acyls and glycerophospholipids, remains stable during fine-flavor cocoa fermentations. Also, several Machine Learning algorithms were trained to explore potential biological activity among the identified lipids. We found that K-Nearest Neighbors had the best performance. This model was used to classify the identified lipids as bioactive or non-bioactive, nominating 28 molecules as potential bioactive lipids. None of these compounds have been previously reported as bioactive. Our work is the first untargeted lipidomic study and systematic effort to investigate potential bioactivity in fine-flavor cocoa lipids.