- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
PurposeMultidrug resistance-associated proteins (MRPs) mediate the hepatobiliary and renal excretion of many drugs and drug conjugates. The positron emission tomography (PET) tracer 6-bromo-7-[11C]methylpurine is rapidly converted in tissues by glutathione-S-transferases into its glutathione conjugate, and has been used to measure the activity of Abcc1 in the brain and the lungs of mice. Aim of this work was to investigate if the activity of MRPs in excretory organs can be measured with 6-bromo-7-[11C]methylpurine.ProceduresWe performed PET scans with 6-bromo-7-[11C]methylpurine in groups of wild-type, Abcc4(−/−) and Abcc1(−/−) mice, with and without pre-treatment with the prototypical MRP inhibitor MK571.Results6-Bromo-7-[11C]methylpurine-derived radioactivity predominantly underwent renal excretion. In blood, MK571 treatment led to a significant increase in the AUC and a decrease in the elimination rate constant of radioactivity (kelimination,blood). In the kidneys, there were significant decreases in the rate constant for radioactivity uptake from the blood (kuptake,kidney), kelimination,kidney, and the rate constant for tubular secretion of radioactivity (kurine). Experiments in Abcc4(−/−) mice indicated that Abcc4 contributed to renal excretion of 6-bromo-7-[11C]methylpurine-derived radioactivity.ConclusionsOur data suggest that 6-bromo-7-[11C]methylpurine may be useful to assess the activity of MRPs in the kidneys as well as in other organs (brain, lungs), although further work is needed to identify the MRP subtypes involved in the disposition of 6-bromo-7-[11C]methylpurine-derived radioactivity.
Publikation
The differentiation of the seed coat epidermal (SCE) cells in Arabidopsis thaliana leads to the production of a large amount of pectin‐rich mucilage and a thick cellulosic secondary cell wall. The mechanisms by which cortical microtubules are involved in the formation of these pectinaceous and cellulosic cell walls are still largely unknown.Using a reverse genetic approach, we found that TONNEAU1 (TON1) recruiting motif 4 (TRM4) is implicated in cortical microtubule organization in SCE cells, and functions as a novel player in the establishment of mucilage structure.TRM4 is preferentially accumulated in the SCE cells at the stage of mucilage biosynthesis. The loss of TRM4 results in compact seed mucilage capsules, aberrant mucilage cellulosic structure, short cellulosic rays and disorganized cellulose microfibrils in mucilage. The defects could be rescued by transgene complementation of trm4 alleles. Probably, this is a consequence of a disrupted organization of cortical microtubules, observed using fluorescently tagged tubulin proteins in trm4 SCE cells. Furthermore, TRM4 proteins co‐aligned with microtubules and interacted directly with CELLULOSE SYNTHASE 3 in two independent assays.Together, the results indicate that TRM4 is essential for microtubule array organization and therefore correct cellulose orientation in the SCE cells, as well as the establishment of the subsequent mucilage architecture.
Publikation
In nature, plants interact with numerous beneficial or pathogenic soil-borne microorganisms. Plants have developed various defense strategies to expel pathogenic microbes, some of which function soon after pathogen infection. We used Medicago truncatula and its oomycete pathogen Aphanomyces euteiches to elucidate early responses of the infected root. A. euteiches causes root rot disease in legumes and is a limiting factor in legume production. Transcript profiling of seedlings and adult plant roots inoculated with A. euteiches zoospores for 2 h revealed specific upregulation of a gene encoding a putative sesquiterpene synthase (M. truncatula TERPENE SYNTHASE 10 [MtTPS10]) in both developmental stages. MtTPS10 was specifically expressed in roots upon oomycete infection. Heterologous expression of MtTPS10 in yeast led to production of a blend of sesquiterpenes and sesquiterpene alcohols, with NMR identifying a major peak corresponding to himalachol. Moreover, plants carrying a tobacco (Nicotiana tabacum) retrotransposon Tnt1 insertion in MtTPS10 lacked the emission of sesquiterpenes upon A. euteiches infection, supporting the assumption that the identified gene encodes a multiproduct sesquiterpene synthase. Mttps10 plants and plants with reduced MtTPS10 transcript levels created by expression of an MtTPS10-artificial microRNA in roots were more susceptible to A. euteiches infection than were the corresponding wild-type plants and roots transformed with the empty vector, respectively. Sesquiterpenes produced by expression of MtTPS10 in yeast also inhibited mycelial growth and A. euteiches zoospore germination. These data suggest that sesquiterpene production in roots by MtTPS10 plays a previously unrecognized role in the defense response of M. truncatula against A. euteiches.
Publikation
Little is known how patterns of cross-over (CO) numbers and distribution during meiosis are established. Here, we reveal that cyclin-dependent kinase A;1 (CDKA;1), the homolog of human Cdk1 and Cdk2, is a major regulator of meiotic recombination in Arabidopsis. Arabidopsis plants with reduced CDKA;1 activity experienced a decrease of class I COs, especially lowering recombination rates in centromere-proximal regions. Interestingly, this reduction of type I CO did not affect CO assurance, a mechanism by which each chromosome receives at least one CO, resulting in all chromosomes exhibiting similar genetic lengths in weak loss-of-function cdka;1 mutants. Conversely, an increase of CDKA;1 activity resulted in elevated recombination frequencies. Thus, modulation of CDKA;1 kinase activity affects the number and placement of COs along the chromosome axis in a dose-dependent manner.
Publikation
Cytosolic Ca2+ ([Ca2+]cyt) elevation is an early signaling response upon exposure to pathogen-derived molecules (so-called microbe-associated molecular patterns, MAMPs) and has been successfully used as a quantitative read-out in genetic screens to identify MAMP receptors or their associated components. Here, we isolated and identified by mass spectrometry the dipeptide γ-Glu-Leu as a component of a Phytophthora infestans mycelium extract that induces [Ca2+]cyt elevation. Treatment of Arabidopsis seedlings with synthetic γ-Glu-Leu revealed stimulatory effects on defense signaling, including a weak enhancement of the expression of some MAMP-inducible genes or affecting the refractory period to a second MAMP elicitation. However, γ-Glu-Leu is not a classical MAMP since pH adjustment abolished these activities and importantly, the observed effects of γ-Glu-Leu could be recapitulated by mimicking extracellular acidification. Thus, although γ-Glu-Leu can act as a direct agonist of calcium sensing receptors in animal systems, the Ca2+-mobilizing activity in plants reported here is due to acidification. Low pH also shapes the Ca2+ signature of well-studied MAMPs (e.g. flg22) or excitatory amino acids such as glutamate. Overall, this work serves as a cautionary reminder that in defense signaling studies where Ca2+ flux measurements are concerned, it is important to monitor and consider the effects of pH.
Publikation
Jasmonic acid biosynthesis starts in chloroplasts and is finalized in peroxisomes. The required export of a crucial intermediate out of the chloroplast is now shown to be mediated by a protein from the outer envelope called JASSY.
Publikation
Pseudomonas syringae employs a battery of type three secretion effectors to subvert plant immune responses. In turn, plants have developed receptors that recognize some of the bacterial effectors. Two strain-specific HopQ1 effector variants (for Hrp outer protein Q) from the pathovars phaseolicola 1448A (Pph) and tomato DC3000 (Pto) showed considerable differences in their ability to evoke disease symptoms in Nicotiana benthamiana. Surprisingly, the variants differ by only six amino acids located mostly in the N-terminal disordered region of HopQ1. We found that the presence of serine 87 and leucine 91 renders PtoHopQ1 susceptible to N-terminal processing by plant proteases. Substitutions at these two positions did not strongly affect PtoHopQ1 virulence properties in a susceptible host but they reduced bacterial growth and accelerated onset of cell death in a resistant host, suggesting that N-terminal mutations rendered PtoHopQ1 susceptible to processing in planta and, thus, represent a mechanism of recognition avoidance. Furthermore, we found that co-expression of HopR1, another effector encoded within the same gene cluster masks HopQ1 recognition in a strain-dependent manner. Together, these data suggest that HopQ1 is under high host-pathogen co-evolutionary selection pressure and P. syringae may have evolved differential effector processing or masking as two independent strategies to evade HopQ1 recognition, thus revealing another level of complexity in plant – microbe interactions.
Publikation
The pyrethrum plant, Tanacetum cinerariifolium (Asteraceae) synthesizes a class of compounds called pyrethrins that have strong insecticidal properties but are safe to humans. Class I pyrethrins are esters of the monoterpenoid trans-chrysanthemic acid with one of three jasmonic-acid derived alcohols. We reconstructed the trans-chrysanthemic acid biosynthetic pathway in tomato fruits, which naturally produce high levels of the tetraterpene pigment lycopene, an isoprenoid which shares a common precursor, dimethylallyl diphosphate (DMAPP), with trans-chrysanthemic acid. trans-Chrysanthemic acid biosynthesis in tomato fruit was achieved by expressing the chrysanthemyl diphosphate synthase gene from T. cinerariifolium, encoding the enzyme that uses DMAPP to make trans-chrysanthemol, under the control of the fruit specific promoter PG, as well as an alcohol dehydrogenease (ADH) gene and aldehyde dehydrogenase (ALDH) gene from a wild tomato species, also under the control of the PG promoter. Tomato fruits expressing all three genes had a concentration of trans-chrysanthemic acid that was about 1.7-fold higher (by weight) than the levels of lycopene present in non-transgenic fruit, while the level of lycopene in the transgenic plants was reduced by 68%. Ninety seven percent of the diverted DMAPP was converted to trans-chrysanthemic acid, but 62% of this acid was further glycosylated. We conclude that the tomato fruit is an alternative platform for the biosynthesis of trans-chrysanthemic acid by metabolic engineering.
Publikation
The oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) causes downy mildew disease on Arabidopsis. To colonize its host, Hpa translocates effector proteins that suppress plant immunity into infected host cells. Here, we investigate the relevance of the interaction between one of these effectors, HaRxL106, and Arabidopsis RADICAL‐INDUCED CELL DEATH1 (RCD1).We use pathogen infection assays as well as molecular and biochemical analyses to test the hypothesis that HaRxL106 manipulates RCD1 to attenuate transcriptional activation of defense genes.We report that HaRxL106 suppresses transcriptional activation of salicylic acid (SA)‐induced defense genes and alters plant growth responses to light. HaRxL106‐mediated suppression of immunity is abolished in RCD1 loss‐of‐function mutants. We report that RCD1‐type proteins are phosphorylated, and we identified Mut9‐like kinases (MLKs), which function as phosphoregulatory nodes at the level of photoreceptors, as RCD1‐interacting proteins. An mlk1,3,4 triple mutant exhibits stronger SA‐induced defense marker gene expression compared with wild‐type plants, suggesting that MLKs also affect transcriptional regulation of SA signaling.Based on the combined evidence, we hypothesize that nuclear RCD1/MLK complexes act as signaling nodes that integrate information from environmental cues and pathogen sensors, and that the Arabidopsis downy mildew pathogen targets RCD1 to prevent activation of plant immunity.
Publikation
Plant oxylipins form a constantly growing group of signaling molecules that comprise oxygenated fatty acids and metabolites derived therefrom. In the last decade, the understanding of biosynthesis, metabolism, and action of oxylipins, especially jasmonates, has dramatically improved. Additional mechanistic insights into the action of enzymes and insights into signaling pathways have been deepened for jasmonates. For other oxylipins, such as the hydroxy fatty acids, individual signaling properties and cross talk between different oxylipins or even with additional phytohormones have recently been described. This review summarizes recent understanding of the biosynthesis, regulation, and function of oxylipins.