Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Wasternack, C.; Hause, B.;BFP1: One of 700 Arabidopsis F-box proteins mediates degradation of JA oxidases to promote plant immunityMol. Plant17375-376(2024)DOI: 10.1016/j.molp.2024.02.008
Plant immunity is a multilayered process that includes recognition of patterns or effectors from pathogens to elicit defense responses. These include the induction of a cocktail of defense metabolites that typically restrict pathogen virulence. Here, we investigate the interaction between barley roots and the fungal pathogens Bipolaris sorokiniana (Bs) and Fusarium graminearum (Fg) at the metabolite level. We identify hordedanes, a previously undescribed set of labdane-related diterpenoids with antimicrobial properties, as critical players in these interactions. Infection of barley roots by Bs and Fg elicits hordedane synthesis from a 600-kb gene cluster. Heterologous reconstruction of the biosynthesis pathway in yeast and Nicotiana benthamiana produced several hordedanes, including one of the most functionally decorated products 19-b-hydroxy-hordetrienoic acid (19-OH-HTA). Barley mutants in the diterpene synthase genes of this cluster are unable to produce hordedanes but, unexpectedly, show reduced Bs colonization. By contrast, colonization by Fusarium graminearum, another fungal pathogen of barley and wheat, is 4-fold higher in the mutants completely lacking hordedanes. Accordingly, 19-OH-HTA enhances both germination and growth of Bs, whereas it inhibits other pathogenic fungi, including Fg. Analysis of microscopy and transcriptomics data suggest that hordedanes delay the necrotrophic phase of Bs. Taken together, these results show that adapted pathogens such as Bs can subvert plant metabolic defenses to facilitate root colonization.
Publikation
Schreiber, T.; Prange, A.; Schäfer, P.; Iwen, T.; Grützner, R.; Marillonnet, S.; Lepage, A.; Javelle, M.; Paul, W.; Tissier, A.;Efficient scar-free knock-ins of several kilobases in plants by engineered CRISPR/Cas endonucleasesMol. Plant17824-837(2024)DOI: 10.1016/j.molp.2024.03.013
In plants and mammals, non-homologous end-joining is the dominant pathway to repair DNA double strand breaks, making it challenging to generate knock-in events. We identified two groups of exonucleases from the Herpes Virus and the bacteriophage T7 families that conferred an up to 38-fold increase in HDR frequencies when fused to Cas9/Cas12a in a Tobacco mosaic virus-based transient assay in Nicotiana benthamiana. We achieved precise and scar-free insertion of several kilobases of DNA both in transient and stable transformation systems. In Arabidopsis thaliana, fusion of Cas9 to a Herpes Virus family exonuclease leads to 10-fold higher frequencies of knock-ins in the first generation of transformants. In addition, we demonstrate stable and heritable knock-ins of in wheat in 1% of the primary transformants. Our results open perspectives for the routine production of heritable knock-in and gene replacement events in plants.
Publikation
Bassal, M.; Abukhalaf, M.; Majovsky, P.; Thieme, D.; Herr, T.; Ayash, M.; Tabassum, N.; Al Shweiki, M. R.; Proksch, C.; Hmedat, A.; Ziegler, J.; Lee, J.; Neumann, S.; Hoehenwarter, W.;Reshaping of the Arabidopsis thaliana Proteome Landscape and Co-regulation of Proteins in Development and ImmunityMol. Plant131709-1732(2020)DOI: 10.1016/j.molp.2020.09.024
Proteome remodeling is a fundamental adaptive response, and proteins in
complexes and functionally related proteins are often co-expressed.
Using a deep sampling strategy we define core proteomes of Arabidopsis thaliana
tissues with around 10 000 proteins per tissue, and absolutely quantify
(copy numbers per cell) nearly 16 000 proteins throughout the plant
lifecycle. A proteome-wide survey of global post-translational
modification revealed amino acid exchanges pointing to potential
conservation of translational infidelity in eukaryotes. Correlation
analysis of protein abundance uncovered potentially new tissue- and
age-specific roles of entire signaling modules regulating transcription
in photosynthesis, seed development, and senescence and abscission.
Among others, the data suggest a potential function of RD26 and other
NAC transcription factors in seed development related to desiccation
tolerance as well as a possible function of cysteine-rich receptor-like
kinases (CRKs) as ROS sensors in senescence. All of the components of
ribosome biogenesis factor (RBF) complexes were found to be co-expressed
in a tissue- and age-specific manner, indicating functional promiscuity
in the assembly of these less-studied protein complexes in Arabidopsis. Furthermore, we characterized detailed proteome remodeling in basal immunity by treating Arabidopsis
seeldings with flg22. Through simultaneously monitoring
phytohormone and transcript changes upon flg22 treatment, we obtained
strong evidence of suppression of jasmonate (JA) and JA-isoleucine
(JA-Ile) levels by deconjugation and hydroxylation by IAA-ALA RESISTANT3
(IAR3) and JASMONATE-INDUCED OXYGENASE 2 (JOX2), respectively, under
the control of JASMONATE INSENSITIVE 1 (MYC2), suggesting an
unrecognized role of a new JA regulatory switch in pattern-triggered
immunity. Taken together, the datasets generated in this study present
extensive coverage of the Arabidopsis proteome in various biological scenarios, providing a rich resource available to the whole plant science community.