Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Méndez, Y.; De Armas, G.; Pérez, I.; Rojas, T.; Valdés-Tresanco, M. E.; Izquierdo, M.; Alonso del Rivero, M.; Álvarez-Ginarte, Y. M.; Valiente, P. A.; Soto, C.; de León, L.; Vasco, A. V.; Scott, W. L.; Westermann, B.; González-Bacerio, J.; Rivera, D. G.;Discovery of potent and selective inhibitors of the Escherichia coli M1-aminopeptidase via multicomponent solid-phase synthesis of tetrazole-peptidomimeticsEur. J. Med. Chem.163481-499(2019)DOI: 10.1016/j.ejmech.2018.11.074
The Escherichia coli neutral M1-aminopeptidase (ePepN) is a novel target identified for the development of antimicrobials. Here we describe a solid-phase multicomponent approach which enabled the discovery of potent ePepN inhibitors. The on-resin protocol, developed in the frame of the Distributed Drug Discovery (D3) program, comprises the implementation of parallel Ugi-azide four-component reactions with resin-bound amino acids, thus leading to the rapid preparation of a focused library of tetrazole-peptidomimetics (TPMs) suitable for biological screening. By dose-response studies, three compounds were identified as potent and selective ePepN inhibitors, as little inhibitory effect was exhibited for the porcine ortholog aminopeptidase. The study allowed for the identification of the key structural features required for a high ePepN inhibitory activity. The most potent and selective inhibitor (TPM 11) showed a non-competitive inhibition profile of ePepN. We predicted that both diastereomers of compound TPM 11 bind to a site distinct from that occupied by the substrate. Theoretical models suggested that TPM 11 has an alternative inhibition mechanism that doesn't involve Zn coordination. On the other hand, the activity landscape analysis provided a rationale for our findings. Of note, compound TMP 2 showed in vitro antibacterial activity against Escherichia coli. Furthermore, none of the three identified inhibitors is a potent haemolytic agent, and only two compounds showed moderate cytotoxic activity toward the murine myeloma P3X63Ag cells. These results point to promising compounds for the future development of rationally designed TPMs as antibacterial agents.
Publikation
Shaaban, S.; Ashmawy, A. M.; Negm, A.; Wessjohann, L. A.;Synthesis and biochemical studies of novel organic selenides with increased selectivity for hepatocellular carcinoma and breast adenocarcinomaEur. J. Med. Chem.179515-526(2019)DOI: 10.1016/j.ejmech.2019.06.075
Nineteen organoselenides were synthesized and tested for their intrinsic cytotoxicity in hepatocellular carcinoma (HepG2) and breast adenocarcinoma (MCF-7) cell lines and their corresponding selective cytotoxicity (SI) was estimated using normal lung fibroblast (WI-38) cells. Most of the organic selenides exhibited good anticancer activity, and this was more pronounced in HepG2 cells. Interestingly, the naphthoquinone- (5), thiazol- (12), and the azo-based (13) organic selenides demonstrated promising SI (up to 76). Furthermore, the amine 4c, naphthoquinone 5, and azo-based 13 and 15 organic selenides were able to down-regulate the expression of Bcl-2 and up-regulate the expression levels of IL-2, IL-6 and CD40 in HepG2 cells compared to untreated cells. Moreover, most of the synthesized candidates manifested good free radical-scavenging and GPx-like activities comparable to vitamin C and ebselen. The obtained results suggested that some of the presented organoselenium candidates have promising anti-HepG2 and antioxidant activities.
Publikation
Loesche, A.; Wiese, J.; Sommerwerk, S.; Simon, V.; Brandt, W.; Csuk, R.;Repurposing N,N'-bis-(arylamidino)-1,4-piperazinedicarboxamidines: An unexpected class of potent inhibitors of cholinesterasesEur. J. Med. Chem.125430-434(2017)DOI: 10.1016/j.ejmech.2016.09.051
Drug repurposing (=drug repositioning) is an effective way to cut costs for the development of new therapeutics and to reduce the time-to-market time-span. Following this concept a small library of compounds was screened for their ability to act as inhibitors of acetyl- and butyrylcholinesterase. Picloxydine, an established antiseptic, was shown to be an inhibitor for both enzymes. Systematic variation of the aryl substituents led to analogs possessing almost the same good properties as gold standard galantamine hydrobromide.
Publikation
Heller, L.; Kahnt, M.; Loesche, A.; Grabandt, P.; Schwarz, S.; Brandt, W.; Csuk, R.;Amino derivatives of platanic acid act as selective and potent inhibitors of butyrylcholinesteraseEur. J. Med. Chem.126652-668(2017)DOI: 10.1016/j.ejmech.2016.11.056
A set of thirtyfive 30-norlupan derivatives (2–36) was prepared from the natural triterpenoid platanic acid (PA), and the hydroxyl group at C-3, the carboxyl group at C-17 and the carbonyl group at C-20 were modified. These derivatives were tested for their inhibitory activity for the enzymes acetylcholinesterase (AChE, from electric eel) and butyrylcholinesterase (BChE, from equine serum) using Ellman's assay. Extra enzyme kinetic studies were performed. The most active compound was (3β, 20R)-3-acetyloxy-20-amino-30-norlupan-28-oate (32) showing a Ki value of 0.01 ± 0.003 μM for BChE. This compound proved to be a selective (FB = 851), mixed-type inhibitor for BChE.