Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
A dsRNAi approach silencing a key enzyme of sinapate ester biosynthesis (UDP-glucose:sinapate glucosyltransferase, encoded by the UGT84A9 gene) in oilseed rape (Brassica napus) seeds was performed to reduce the anti-nutritive properties of the seeds by lowering the content of the major seed component sinapine (sinapoylcholine) and various minor sinapate esters. The transgenic seeds have been produced so far to the T6 generation and revealed a steady suppression of sinapate ester accumulation. HPLC analysis of the wild-type and transgenic seeds revealed, as in the previous generations, marked alterations of the sinapate ester pattern of the transformed seeds. Besides strong reduction of the amount of the known sinapate esters, HPLC analysis revealed unexpectedly the appearance of several minor hitherto unknown rapeseed constituents. These compounds were isolated and identified by mass spectrometric and NMR spectroscopic analyses. Structures of 11 components were elucidated to be 4-O-glucosides of syringate, caffeyl alcohol and its 7,8-dihydro derivative as well as of sinapate and sinapine, along with sinapoylated kaempferol glycosides, a hexoside of a cyclic spermidine alkaloid and a sinapine derivative with an ether-bridge to a C6–C3-unit. These results indicate a strong impact of the transgenic approach on the metabolic network of phenylpropanoids in B. napus seeds. Silencing of UGT84A9 gene expression disrupt the metabolic flow through sinapoylglucose and alters the amounts and nature of the phenylpropanoid endproducts.
Publikation
Kopycki, J. G.; Stubbs, M. T.; Brandt, W.; Hagemann, M.; Porzel, A.; Schmidt, J.; Schliemann, W.; Zenk, M. H.; Vogt, T.;Functional and Structural Characterization of a Cation-dependent O-Methyltransferase from the Cyanobacterium Synechocystis sp. Strain PCC 6803J. Biol. Chem.28320888-20896(2008)DOI: 10.1074/jbc.M801943200
The coding sequence of the cyanobacterium Synechocystis sp. strain PCC 6803 slr0095 gene was cloned and functionally expressed in Escherichia coli. The corresponding enzyme was classified as a cation- and S-adenosyl-l-methionine-dependent O-methyltransferase (SynOMT), consistent with considerable amino acid sequence identities to eukaryotic O-methyltransferases (OMTs). The substrate specificity of SynOMT was similar with those of plant and mammalian CCoAOMT-like proteins accepting a variety of hydroxycinnamic acids and flavonoids as substrates. In contrast to the known mammalian and plant enzymes, which exclusively methylate the meta-hydroxyl position of aromatic di- and trihydroxy systems, Syn-OMT also methylates the para-position of hydroxycinnamic acids like 5-hydroxyferulic and 3,4,5-trihydroxycinnamic acid, resulting in the formation of novel compounds. The x-ray structure of SynOMT indicates that the active site allows for two alternative orientations of the hydroxylated substrates in comparison to the active sites of animal and plant enzymes, consistent with the observed preferred para-methylation and position promiscuity. Lys3 close to the N terminus of the recombinant protein appears to play a key role in the activity of the enzyme. The possible implications of these results with respect to modifications of precursors of polymers like lignin are discussed.
Publikation
Schliemann, W.; Ammer, C.; Strack, D.;Metabolite profiling of mycorrhizal roots of Medicago truncatulaPhytochemistry69112-146(2008)DOI: 10.1016/j.phytochem.2007.06.032
Metabolite profiling of soluble primary and secondary metabolites, as well as cell wall-bound phenolic compounds from roots of barrel medic (Medicago truncatula) was carried out by GC–MS, HPLC and LC–MS. These analyses revealed a number of metabolic characteristics over 56 days of symbiotic interaction with the arbuscular mycorrhizal (AM) fungus Glomus intraradices, when compared to the controls, i.e. nonmycorrhizal roots supplied with low and high amounts of phosphate. During the most active stages of overall root mycorrhization, elevated levels of certain amino acids (Glu, Asp, Asn) were observed accompanied by increases in amounts of some fatty acids (palmitic and oleic acids), indicating a mycorrhiza-specific activation of plastidial metabolism. In addition, some accumulating fungus-specific fatty acids (palmitvaccenic and vaccenic acids) were assigned that may be used as markers of fungal root colonization. Stimulation of the biosynthesis of some constitutive isoflavonoids (daidzein, ononin and malonylononin) occurred, however, only at late stages of root mycorrhization. Increase of the levels of saponins correlated AM-independently with plant growth. Only in AM roots was the accumulation of apocarotenoids (cyclohexenone and mycorradicin derivatives) observed. The structures of the unknown cyclohexenone derivatives were identified by spectroscopic methods as glucosides of blumenol C and 13-hydroxyblumenol C and their corresponding malonyl conjugates. During mycorrhization, the levels of typical cell wall-bound phenolics (e.g. 4-hydroxybenzaldehyde, vanillin, ferulic acid) did not change; however, high amounts of cell wall-bound tyrosol were exclusively detected in AM roots.Principal component analyses of nonpolar primary and secondary metabolites clearly separated AM roots from those of the controls, which was confirmed by an hierarchical cluster analysis. Circular networks of primary nonpolar metabolites showed stronger and more frequent correlations between metabolites in the mycorrhizal roots. The same trend, but to a lesser extent, was observed in nonmycorrhizal roots supplied with high amounts of phosphate. These results indicate a tighter control of primary metabolism in AM roots compared to control plants. Network correlation analyses revealed distinct clusters of amino acids and sugars/aliphatic acids with strong metabolic correlations among one another in all plants analyzed; however, mycorrhizal symbiosis reduced the cluster separation and enlarged the sugar cluster size. The amino acid clusters represent groups of metabolites with strong correlations among one another (cliques) that are differently composed in mycorrhizal and nonmycorrhizal roots. In conclusion, the present work shows for the first time that there are clear differences in development- and symbiosis-dependent primary and secondary metabolism of M. truncatula roots.
Publikation
Schliemann, W.; Ammer, C.; Strack, D.;Erratum to “Metabolite profiling of mycorrhizal roots of Medicago truncatula” [Phytochemistry 69 (2008) 112–146]Phytochemistry691446-1447(2008)DOI: 10.1016/j.phytochem.2008.02.004