Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Targeted proteomics via selected reaction monitoring is a powerful mass spectrometric technique affording higher dynamic range, increased specificity and lower limits of detection than other shotgun mass spectrometry methods when applied to proteome analyses. However, it involves selective measurement of predetermined analytes, which requires more preparation in the form of selecting appropriate signatures for the proteins and peptides that are to be targeted. There is a growing number of software programs and resources for selecting optimal transitions and the instrument settings used for the detection and quantification of the targeted peptides, but the exchange of this information is hindered by a lack of a standard format. We have developed a new standardized format, called TraML, for encoding transition lists and associated metadata. In addition to introducing the TraML format, we demonstrate several implementations across the community, and provide semantic validators, extensive documentation, and multiple example instances to demonstrate correctly written documents. Widespread use of TraML will facilitate the exchange of transitions, reduce time spent handling incompatible list formats, increase the reusability of previously optimized transitions, and thus accelerate the widespread adoption of targeted proteomics via selected reaction monitoring.
Publikation
Kuhl, C.; Tautenhahn, R.; Böttcher, C.; Larson, T. R.; Neumann, S.;CAMERA: An Integrated Strategy for Compound Spectra Extraction and Annotation of Liquid Chromatography/Mass Spectrometry Data SetsAnal. Chem.84283-289(2012)DOI: 10.1021/ac202450g
Liquid chromatography coupled to mass spectrometry is routinely used for metabolomics experiments. In contrast to the fairly routine and automated data acquisition steps, subsequent compound annotation and identification require extensive manual analysis and thus form a major bottleneck in data interpretation. Here we present CAMERA, a Bioconductor package integrating algorithms to extract compound spectra, annotate isotope and adduct peaks, and propose the accurate compound mass even in highly complex data. To evaluate the algorithms, we compared the annotation of CAMERA against a manually defined annotation for a mixture of known compounds spiked into a complex matrix at different concentrations. CAMERA successfully extracted accurate masses for 89.7% and 90.3% of the annotatable compounds in positive and negative ion modes, respectively. Furthermore, we present a novel annotation approach that combines spectral information of data acquired in opposite ion modes to further improve the annotation rate. We demonstrate the utility of CAMERA in two different, easily adoptable plant metabolomics experiments, where the application of CAMERA drastically reduced the amount of manual analysis.
Publikation
Chambers, M. C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D. L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; Hoff, K.; Kessner, D.; Tasman, N.; Shulman, N.; Frewen, B.; Baker, T. A.; Brusniak, M.-Y.; Paulse, C.; Creasy, D.; Flashner, L.; Kani, K.; Moulding, C.; Seymour, S. L.; Nuwaysir, L. M.; Lefebvre, B.; Kuhlmann, F.; Roark, J.; Rainer, P.; Detlev, S.; Hemenway, T.; Huhmer, A.; Langridge, J.; Connolly, B.; Chadick, T.; Holly, K.; Eckels, J.; Deutsch, E. W.; Moritz, R. L.; Katz, J. E.; Agus, D. B.; MacCoss, M.; Tabb, D. L.; Mallick, P.;A cross-platform toolkit for mass spectrometry and proteomicsNat. Biotechnol.30918-920(2012)DOI: 10.1038/nbt.2377
Schymanski, E. L.; Gallampois, C. M. J.; Krauss, M.; Meringer, M.; Neumann, S.; Schulze, T.; Wolf, S.; Brack, W.;Consensus Structure Elucidation Combining GC/EI-MS, Structure Generation, and Calculated PropertiesAnal. Chem.843287-3295(2012)DOI: 10.1021/ac203471y
This article explores consensus structure elucidation on the basis of GC/EI-MS, structure generation, and calculated properties for unknown compounds. Candidate structures were generated using the molecular formula and substructure information obtained from GC/EI-MS spectra. Calculated properties were then used to score candidates according to a consensus approach, rather than filtering or exclusion. Two mass spectral match calculations (MOLGEN-MS and MetFrag), retention behavior (Lee retention index/boiling point correlation, NIST Kovat’s retention index), octanol–water partitioning behavior (log Kow), and finally steric energy calculations were used to select candidates. A simple consensus scoring function was developed and tested on two unknown spectra detected in a mutagenic subfraction of a water sample from the Elbe River using GC/EI-MS. The top candidates proposed using the consensus scoring technique were purchased and confirmed analytically using GC/EI-MS and LC/MS/MS. Although the compounds identified were not responsible for the sample mutagenicity, the structure-generation-based identification for GC/EI-MS using calculated properties and consensus scoring was demonstrated to be applicable to real-world unknowns and suggests that the development of a similar strategy for multidimensional high-resolution MS could improve the outcomes of environmental and metabolomics studies.