Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Farag, M. A.; Sharaf El-Din, M. G.; Selim, M. A.; Owis, A. I.; Abouzid, S. F.; Porzel, A.; Wessjohann, L. A.; Otify, A.;Nuclear magnetic resonance metabolomics approach for the analysis of major legume sprouts coupled to chemometricsMolecules26761(2021)DOI: 10.3390/molecules26030761
Legume sprouts are a fresh nutritive source of phytochemicals of increasing attention worldwide owing to their many health benefits. Nuclear magnetic resonance (NMR) was utilized for the metabolite fingerprinting of 4 major legume sprouts, belonging to family Fabaceae, to be exploited for quality control purposes. Thirty-two metabolites were identified belonging to different classes, i.e., fatty acids, sugars, amino acids, nucleobases, organic acids, sterols, alkaloids, and isoflavonoids. Quantitative NMR was employed for assessing the major identified metabolite levels and multivariate data analysis was utilized to assess metabolome heterogeneity among sprout samples. Isoflavones were detected exclusively in Cicer sprouts, whereas Trigonella was characterized by 4-hydroxyisoleucine. Vicia sprouts were distinguished from other legume sprouts by the presence of L-Dopa versus acetate abundance in Lens. A common alkaloid in all sprouts was trigonelline, detected at 8–25 µg/mg, suggesting its potential role in legume seeds’ germination. Trigonelline was found at highest levels in Trigonella sprouts. The aromatic NMR region data (δ 11.0–5.0 ppm) provided a better classification power than the full range (δ 11.0–0.0 ppm) as sprout variations mostly originated from secondary metabolites, which can serve as chemotaxonomic markers.
Publikation
Ramadan, N. S.; Wessjohann, L. A.; Mocan, A.; Vodnar, D. C.; El-Sayed, N. H.; El-Toumy, S. A.; Mohamed, D. A.; Aziz, Z. A.; Ehrlich, A.; Farag, M. A.;Nutrient and Sensory Metabolites Profiling of Averrhoa Carambola L. (Starfruit) in the Context of Its Origin and Ripening Stage by GC/MS and Chemometric AnalysisMolecules252423(2020)DOI: 10.3390/molecules25102423
Averrhoa carambola L. is a tropical tree with edible fruit that grows at different climatic conditions. Despite its nutritive value and reported health benefits, it is a controversial fruit owing to its rich oxalate content. The present study aimed at investigating aroma and nutrient primary metabolites distribution in A. carambola fruits grown in Indonesia, Malaysia (its endemic origin) versus Egypt, and at different ripening stages. Two techniques were employed to assess volatile and non-volatile metabolites including headspace solid-phase micro-extraction (HS-SPME) joined with gas chromatography coupled with mass-spectrometry (GC-MS) and GC-MS post silylation, respectively. Twenty-four volatiles were detected, with esters amounting for the major class of volatiles in Egyptian fruit at ca. 66%, with methyl caproate as the major component, distinguishing it from other origins. In contrast, aldehydes predominated tropically grown fruits with the ether myristicin found exclusively in these. Primary metabolites profiling led to the identification of 117 metabolites viz. sugars, polyols and organic acids. Fructose (38–48%) and glucose (21–25%) predominated sugar compositions in ripe fruits, whereas sorbitol was the major sugar alcohol (2.4–10.5%) in ripe fruits as well. Oxalic acid, an anti-nutrient with potential health risks, was the major organic acid detected in all the studied fruits (1.7–2.7%), except the Malaysian one (0.07%). It increases upon fruit ripening, including considerable amounts of volatile oxalate esters detected via SPME, and which must not be omitted in total oxalate determinations for safety assessments.
Publikation
Farag, M. A.; Otify, A. M.; El-Sayed, A. M.; Michel, C. G.; ElShebiney, S. A.; Ehrlich, A.; Wessjohann, L. A.;Sensory Metabolite Profiling in a Date Pit Based Coffee Substitute and in Response to Roasting as Analyzed via Mass Spectrometry Based MetabolomicsMolecules243377(2019)DOI: 10.3390/molecules24183377
Interest in developing coffee substitutes is on the rise, to minimizing its health side effects. In the Middle East, date palm (Phoenix dactylifera L.) pits are often used as a coffee substitute post roasting. In this study, commercially-roasted date pit products, along with unroasted and home-prepared roasted date pits, were subjected to analyses for their metabolite composition, and neuropharmacological evaluation in mice. Headspace SPME-GCMS and GCMS post silylation were employed for characterizing its volatile and non-volatile metabolite profile. For comparison to roasted coffee, coffee product was also included. There is evidence that some commercial date pit products appear to contain undeclared additives. SPME headspace analysis revealed the abundance of furans, pyrans, terpenoids and sulfur compounds in roasted date pits, whereas pyrroles and caffeine were absent. GCMS-post silylation employed for primary metabolite profiling revealed fatty acids’ enrichment in roasted pits versus sugars’ abundance in coffee. Biological investigations affirmed that date pit showed safer margin than coffee from its LD50, albeit it exhibits no CNS stimulant properties. This study provides the first insight into the roasting impact on the date pit through its metabolome and its neuropharmacological aspects to rationalize its use as a coffee substitute.
Publikation
Farag, M. A.; Tawfike, A. F.; Donia, M. S.; Ehrlich, A.; Wessjohann, L. A.;Influence of Pickling Process on Allium cepa and Citrus limon Metabolome as Determined via Mass Spectrometry-Based MetabolomicsMolecules24928(2019)DOI: 10.3390/molecules24050928
Brine, the historically known food additive salt solution, has been widely used as a pickling media to preserve flavor or enhance food aroma, appearance, or other qualities. The influence of pickling, using brine, on the aroma compounds and the primary and secondary metabolite profile in onion bulb Allium cepa red cv. and lemon fruit Citrus limon was evaluated using multiplex metabolomics technologies. In lemon, pickling negatively affected its key odor compound “citral”, whereas monoterpene hydrocarbons limonene and γ-terpinene increased in the pickled product. Meanwhile, in onion sulphur rearrangement products appeared upon storage, i.e., 3,5-diethyl-1,2,4-trithiolane. Profiling of the polar secondary metabolites in lemon fruit via ultra-performance liquid chromatography coupled to MS annotated 37 metabolites including 18 flavonoids, nine coumarins, five limonoids, and two organic acids. With regard to pickling impact, notable and clear separation among specimens was observed with an orthogonal projections to least squares-discriminant analysis (OPLS-DA) score plot for the lemon fruit model showing an enrichment of limonoids and organic acids and that for fresh onion bulb showing an abundance of flavonols and saponins. In general, the pickling process appeared to negatively impact the abundance of secondary metabolites in both onion and lemon, suggesting a decrease in their food health benefits.