Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Ubiquitination is a prevalent post-translational modification involved in all aspects of cell physiology. It is mediated by an enzymatic cascade and the E2 ubiquitin-conjugating enzymes (UBCs) lie at its heart. Even though E3 ubiquitin ligases determine the specificity of the reaction, E2s catalyse the attachment of ubiquitin and have emerged as key mediators of chain assembly. They are largely responsible for the type of linkage between ubiquitin moieties and thus, the fate endowed onto the modified substrate. However, in vivo E2-E3 pairing remains largely unexplored. We therefore interrogated the interaction selectivity between 37 Arabidopsis E2s and PUB22, a U-box type E3 ubiquitin ligase that is involved in the dampening of immune signalling. We show that while the U-box domain, which mediates E2 docking, is able to interact with 18 out of 37 tested E2s, the substrate interacting armadillo (ARM) repeats impose a second layer of specificity, allowing the interaction with eleven E2s. In vitro activity assayed by autoubiquitination only partially recapitulated the in vivo selectivity. Moreover, in vivo pairing was modulated during the immune response; pairing with group VI UBC30 was inhibited, while interaction with the K63 chain-building UBC35 was increased. Functional analysis of ubc35 ubc36 mutants shows that they partially mimic pub22 pub23 pub24 enhanced activation of immune responses. Together, our work provides a framework to interrogate in vivo E2-E3 pairing and reveals a multi-tiered and dynamic E2-E3 network.
Publikation
Winkler, M.; Niemeyer, M.; Hellmuth, A.; Janitza, P.; Christ, G.; Samodelov, S. L.; Wilde, V.; Majovsky, P.; Trujillo, M.; Zurbriggen, M. D.; Hoehenwarter, W.; Quint, M.; Calderón Villalobos, L. I. A.;Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destructionNat. Commun.815706(2017)DOI: 10.1038/ncomms15706
Auxin is a small molecule morphogen that bridges SCFTIR1/AFB-AUX/IAA co-receptor interactions leading to ubiquitylation and proteasome-dependent degradation of AUX/IAA transcriptional repressors. Here, we systematically dissect auxin sensing by SCFTIR1-IAA6 and SCFTIR1-IAA19 co-receptor complexes, and assess IAA6/IAA19 ubiquitylation in vitro and IAA6/IAA19 degradation in vivo. We show that TIR1-IAA19 and TIR1-IAA6 have distinct auxin affinities that correlate with ubiquitylation and turnover dynamics of the AUX/IAA. We establish a system to track AUX/IAA ubiquitylation in IAA6 and IAA19 in vitro and show that it occurs in flexible hotspots in degron-flanking regions adorned with specific Lys residues. We propose that this signature is exploited during auxin-mediated SCFTIR1-AUX/IAA interactions. We present evidence for an evolving AUX/IAA repertoire, typified by the IAA6/IAA19 ohnologues, that discriminates the range of auxin concentrations found in plants. We postulate that the intrinsic flexibility of AUX/IAAs might bias their ubiquitylation and destruction kinetics enabling specific auxin responses.