Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
SUMMARYWHIRLY1 belongs to a family of plant‐specific transcription factors capable of binding DNA or RNA in all three plant cell compartments that contain genetic materials. In Arabidopsis thaliana, WHIRLY1 has been studied at the later stages of plant development, including flowering and leaf senescence, as well as in biotic and abiotic stress responses. In this study, WHIRLY1 knockout mutants of A. thaliana were prepared by CRISPR/Cas9‐mediated genome editing to investigate the role of WHIRLY1 during early seedling development. The loss‐of‐function of WHIRLY1 in 5‐day‐old seedlings did not cause differences in the phenotype and the photosynthetic performance of the emerging cotyledons compared with the wild type. Nevertheless, comparative RNA sequencing analysis revealed that the knockout of WHIRLY1 affected the expression of a small but specific set of genes during this critical phase of development. About 110 genes were found to be significantly deregulated in the knockout mutant, wherein several genes involved in the early steps of aliphatic glucosinolate (GSL) biosynthesis were suppressed compared with wild‐type plants. The downregulation of these genes in WHIRLY1 knockout lines led to decreased GSL contents in seedlings and in seeds. Since GSL catabolism mediated by myrosinases was not altered during seed‐to‐seedling transition, the results suggest that AtWHIRLY1 plays a major role in modulation of aliphatic GSL biosynthesis during early seedling development. In addition, phylogenetic analysis revealed a coincidence between the evolution of methionine‐derived aliphatic GSLs and the addition of a new WHIRLY in core families of the plant order Brassicales.
Publikation
Khalil, S.; Strah, R.; Lodovici, A.; Vojta, P.; Berardinis, F. D.; Ziegler, J.; Novak, M. P.; Zanin, L.; Tomasi, N.; Forneck, A.; Griesser, M.;The activation of iron deficiency responses of grapevine rootstocks is dependent to the availability of the nitrogen formsBMC Plant Biol.24218(2024)DOI: 10.1186/s12870-024-04906-y
Background
In viticulture, iron (Fe) chlorosis is a common abiotic stress that impairs plant development and leads to yield and quality losses. Under low availability of the metal, the applied N form (nitrate and ammonium) can play a role in promoting or mitigating Fe deficiency stresses. However, the processes involved are not clear in grapevine. Therefore, the aim of this study was to investigate the response of two grapevine rootstocks to the interaction between N forms and Fe uptake. This process was evaluated in a hydroponic experiment using two ungrafted grapevine rootstocks Fercal (Vitis berlandieri x V. vinifera) tolerant to deficiency induced Fe chlorosis and Couderc 3309 (V. riparia x V. rupestris) susceptible to deficiency induced Fe chlorosis.
Results The results could differentiate Fe deficiency effects, N-forms effects, and rootstock effects. Interveinal chlorosis of young leaves appeared earlier on 3309 C from the second week of treatment with NO3−/NH4+ (1:0)/-Fe, while Fercal leaves showed less severe symptoms after four weeks of treatment, corresponding to decreased chlorophyll concentrations lowered by 75% in 3309 C and 57% in Fercal. Ferric chelate reductase (FCR) activity was by trend enhanced under Fe deficiency in Fercal with both N combinations, whereas 3309 C showed an increase in FCR activity under Fe deficiency only with NO3−/NH4+ (1:1) treatment. With the transcriptome analysis, Gene Ontology (GO) revealed multiple biological processes and molecular functions that were significantly regulated in grapevine rootstocks under Fe-deficient conditions, with more genes regulated in Fercal responses, especially when both forms of N were supplied. Furthermore, the expression of genes involved in the auxin and abscisic acid metabolic pathways was markedly increased by the equal supply of both forms of N under Fe deficiency conditions. In addition, changes in the expression of genes related to Fe uptake, regulation, and transport reflected the different responses of the two grapevine rootstocks to different N forms.
Conclusions Results show a clear contribution of N forms to the response of the two grapevine rootstocks under Fe deficiency, highlighting the importance of providing both N forms (nitrate and ammonium) in an appropriate ratio in order to ease the rootstock responses to Fe deficiency.
Publikation
Grosskopf, A.; Rahn, J.; Kim, A.; Szabó, G.; Rujescu, D.; Klawonn, F.; Frolov, A.; Simm, A.;Peptide-bound glycative, AGE and oxidative modifications as biomarkers for the diagnosis of Alzheimer’s Disease—A Feasibility StudyBiomedicines122127(2024)DOI: 10.3390/biomedicines12092127
Background: The diagnosis of Alzheimer’s disease (AD) relies on core cerebrospinal fluid (CSF) biomarkers, amyloid beta (Aβ) and tau. As the brain is then already damaged, researchers still strive to discover earlier biomarkers of disease onset and the progression of AD. Glycation, advanced glycation end products (AGEs) and oxidative modifications on proteins in CSF mirror the underlying biological mechanisms that contribute to early AD pathology. However, analyzing free AGEs in the body fluids of AD patients has led to controversial results. Thus, this pilot study aimed to test the feasibility of detecting, identifying and quantifying differentially glycated, AGE or oxidatively modified peptides in CSF proteins of AD patients (n = 5) compared to a control group (n = 5). Methods: To this end, we utilized a data-dependent (DDA) nano liquid chromatography (LC) linear ion trap-Orbitrap tandem mass spectrometry (MS/MS) ) approach and database search that included over 30 glycative and oxidative modifications in four search nodes to analyze endogenous modifications on individual peptides. Furthermore, we quantified candidate peptide abundance using LC Quan. Results: We identified 299 sites of early and advanced glycation and 53 sites of oxidatively modified tryptophan. From those, we identified 17 promising candidates as putative biomarkers (receiver operating curve-area under the curve (ROC-AUC) > 0.8), albeit without statistical significance. Conclusions: The potential candidates with higher discrimination power showed correlations with established diagnostic markers, thus hinting toward the potential of those peptides as biomarkers.
Publikation
Frey, M.; Bathe, U.; Meink, L.; Balcke, G. U.; Schmidt, J.; Frolov, A.; Soboleva, A.; Hassanin, A.; Davari, M. D.; Frank, O.; Schlagbauer, V.; Dawid, C.; Tissier, A.;Combinatorial biosynthesis in yeast leads to over 200 diterpenoidsMetab. Eng.82193-200(2024)DOI: 10.1016/j.ymben.2024.02.006
Diterpenoids form a diverse group of natural products, many of which are or could become pharmaceuticals or industrial chemicals. The modular character of diterpene biosynthesis and the promiscuity of the enzymes involved make combinatorial biosynthesis a promising approach to generate libraries of diverse diterpenoids. Here, we report on the combinatorial assembly in yeast of ten diterpene synthases producing (+)-copalyldiphosphate-derived backbones and four cytochrome P450 oxygenases (CYPs) in diverse combinations. This resulted in the production of over 200 diterpenoids. Based on literature and chemical database searches, 162 of these compounds can be considered new-to-Nature. The CYPs accepted most substrates they were given but remained regioselective with few exceptions. Our results provide the basis for the systematic exploration of the diterpenoid chemical space in yeast using sequence databases.