Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
GC/EI-MS-based metabolite profiling of derivatized polar fractions of crude plant extracts typically reveals several hundred components. Thereof, only up to one half can be identified using mass spectral and retention index libraries, the rest remains unknown. In the present work, the utility of GC/APCI(+)-QTOFMS for the annotation of unknown components was explored. Hence, EI and APCI(+) mass spectra of ~100 known components were extracted from GC/EI-QMS and GC/APCI(+)-QTOFMS profiles obtained from a methoximated and trimethylsilylated root extract of Arabidopsis thaliana. Based on this reference set, adduct and fragment ion formation under APCI(+) conditions was examined and the calculation of elemental compositions evaluated. During these studies, most of the components formed dominating protonated molecular ions. Despite the high mass accuracy (|Δm| ≤ 3 mDa) and isotopic pattern accuracy (mSigma ≤ 30) the determination of a component’s unique native elemental composition requires additional information, namely the number of trimethylsilyl and methoxime moieties as well as the analysis of corresponding collision-induced dissociation (CID) mass spectra. After all, the reference set was used to develop a strategy for the pairwise assignment of EI and APCI(+) mass spectra. Proceeding from these findings, the annotation of unidentified components detected by GC/EI-QMS using GC/APCI(+)-QTOFMS and corresponding deuterated derivatization reagents was attempted. For a total of 25 unknown components, pairs of EI and APCI(+) mass spectra were compiled and elemental compositions determined. Integrative interpretation of EI and CID mass spectra resulted in 14 structural hypotheses, of which seven were confirmed using authenticated standards.
Publikation
Staniek, A.; Bouwmeester, H.; Fraser, P. D.; Kayser, O.; Martens, S.; Tissier, A.; van der Krol, S.; Wessjohann, L.; Warzecha, H.;Natural products - learning chemistry from plantsBiotechnol. J.9326-336(2014)DOI: 10.1002/biot.201300059
Plant natural products (PNPs) are unique in that they represent a vast array of different structural features, ranging from relatively simple molecules to very complex ones. Given the fact that many plant secondary metabolites exhibit profound biological activity, they are frequently used as fragrances and flavors, medicines, as well as industrial chemicals. As the intricate structures of PNPs often cannot be mimicked by chemical synthesis, the original plant providers constitute the sole source for their industrial, large‐scale production. However, sufficient supply is not guaranteed for all molecules of interest, making the development of alternative production systems a priority. Modern techniques, such as genome mining and thorough biochemical analysis, have helped us gain preliminary understanding of the enzymatic formation of the valuable ingredients in planta. Herein, we review recent advances in the application of biocatalytical processes, facilitating generation of complex PNPs through utilization of plant‐derived specific enzymes and combinatorial biochemistry. We further evaluate the options of employing heterologous organisms harboring PNP biosynthetic pathways for the production of secondary metabolites of interest.
Publikation
Song, S.; Qi, T.; Wasternack, C.; Xie, D.;Jasmonate signaling and crosstalk with gibberellin and ethyleneCurr. Opin. Plant Biol.21112-119(2014)DOI: 10.1016/j.pbi.2014.07.005
The phytohormone jasmonate (JA) plays essential roles in plant growth, development and defense. In response to the JA signal, the CORONATINE INSENSITIVE 1 (COI1)-based SCF complexes recruit JASMONATE ZIM-domain (JAZ) repressors for ubiquitination and degradation, and subsequently regulate their downstream signaling components essential for various JA responses. Tremendous progress has been made in understanding the JA signaling pathway and its crosstalk with other phytohormone pathways during the past two decades. Recent studies have revealed that a variety of positive and negative regulators act as targets of JAZs to control distinctive JA responses, and that JAZs and these regulators function as crucial interfaces to mediate synergy and antagonism between JA and other phytohormones. Owing to different regulatory players in JA perception and JA signaling, a fine-tuning of JA-dependent processes in plant growth, development and defense is achieved. In this review, we will summarize the latest progresses in JA signaling and its crosstalk with gibberellin and ethylene.
Publikation
Siersleben, S.; Penselin, D.; Wenzel, C.; Albert, S.; Knogge, W.;PFP1, a Gene Encoding an Epc-N Domain-Containing Protein, Is Essential for Pathogenicity of the Barley Pathogen Rhynchosporium communeEukaryot. Cell131026-1035(2014)DOI: 10.1128/EC.00043-14
Scald caused by Rhynchosporium commune is an important foliar disease of barley. Insertion mutagenesis of R. commune generated a nonpathogenic fungal mutant which carries the inserted plasmid in the upstream region of a gene named PFP1. The characteristic feature of the gene product is an Epc-N domain. This motif is also found in homologous proteins shown to be components of histone acetyltransferase (HAT) complexes of fungi and animals. Therefore, PFP1 is suggested to be the subunit of a HAT complex in R. commune with an essential role in the epigenetic control of fungal pathogenicity. Targeted PFP1 disruption also yielded nonpathogenic mutants which showed wild-type-like growth ex planta, except for the occurrence of hyphal swellings. Complementation of the deletion mutants with the wild-type gene reestablished pathogenicity and suppressed the hyphal swellings. However, despite wild-type-level PFP1 expression, the complementation mutants did not reach wild-type-level virulence. This indicates that the function of the protein complex and, thus, fungal virulence are influenced by a position-affected long-range control of PFP1 expression.