Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
As components of the glucosinolate-myrosinase system, specifier proteins contribute to the diversity of chemical defenses that have evolved in plants of the Brassicales order as a protection against herbivores and pathogens. Glucosinolates are thioglucosides that are stored separately from their hydrolytic enzymes, myrosinases, in plant tissue. Upon tissue disruption, glucosinolates are hydrolyzed by myrosinases yielding instable aglucones that rearrange to form defensive isothiocyanates. In the presence of specifier proteins, other products, namely simple nitriles, epithionitriles and organic thiocyanates, can be formed instead of isothiocyanates depending on the glucosinolate side chain structure and the type of specifier protein. The biochemical role of specifier proteins is largely unresolved. We have used two thiocyanate-forming proteins and one epithiospecifier protein with different substrate/product specificities to develop molecular models that, in conjunction with mutational analyses, allow us to propose an active site and docking arrangements with glucosinolate aglucones that may explain some of the differences in specifier protein specificities. Furthermore, quantum-mechanical calculations support a reaction mechanism for benzylthiocyanate formation including a catalytic role of the TFP involved. These results may serve as a basis for further theoretical and experimental investigations of the mechanisms of glucosinolate breakdown that will also help to better understand the evolution of specifier proteins from ancestral proteins with functions outside glucosinolate metabolism.
Publikation
Proels, R. K.; Hause, B.; Berger, S.; Roitsch, T.;Novel mode of hormone induction of tandem tomato invertase genes in floral tissuesPlant Mol. Biol.52191-201(2003)DOI: 10.1023/A:1023973705403
The genomic organization of two extracellular invertase genes from tomato (Lin5 and Lin7), which are linked in a direct tandem repeat, and their tissue-specific and hormone-inducible expression are shown. Transient expression analysis ofLin5 promoter sequences fused to the β-glucuronidase (GUS) reporter gene (uidA) demonstrates a specific expression of Lin5during tomato fruit development. A Lin5 promoter fragment was fused to the truncated nos promoter to analyse hormone induction via GUS reporter gene activity in transiently transformed tobacco leaves. A specific up-regulation of GUS activity conferred by this Lin5 promoter fragment in response to gibberellic acid (GA), auxin and abscisic acid (ABA) treatment was observed, indicating a critical role of the regulation of Lin5 by phytohormones in tomato flower and fruit development. In situ hybridization analysis of Lin7 shows a high tissue-specific expression in tapetum and pollen. These results support an important role for Lin5 and Lin7 extracellular invertases in the development of reproductive organs in tomato and contribute to unravel the underlying regulatory mechanisms.
Publikation
Stenzel, I.; Hause, B.; Miersch, O.; Kurz, T.; Maucher, H.; Weichert, H.; Ziegler, J.; Feussner, I.; Wasternack, C.;Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thalianaPlant Mol. Biol.51895-911(2003)DOI: 10.1023/A:1023049319723
In biosynthesis of octadecanoids and jasmonate (JA), the naturally occurring enantiomer is established in a step catalysed by the gene cloned recently from tomato as a single-copy gene (Ziegler et al., 2000). Based on sequence homology, four full-length cDNAs were isolated from Arabidopsis thaliana ecotype Columbia coding for proteins with AOC activity. The expression of AOCgenes was transiently and differentially up-regulated upon wounding both locally and systemically and was induced by JA treatment. In contrast, AOC protein appeared at constitutively high basal levels and was slightly increased by the treatments. Immunohistochemical analyses revealed abundant occurrence of AOC protein as well as of the preceding enzymes in octadecanoid biosynthesis, lipoxygenase (LOX) and allene oxide synthase (AOS), in fully developed tissues, but much less so in 7-day old leaf tissues. Metabolic profiling data of free and esterified polyunsaturated fatty acids and lipid peroxidation products including JA and octadecanoids in wild-type leaves and the jasmonate-deficient mutant OPDA reductase 3 (opr3) revealed preferential activity of the AOS branch within the LOX pathway. 13-LOX products occurred predominantly as esterified derivatives, and all 13-hydroperoxy derivatives were below the detection limits. There was a constitutive high level of free 12-oxo-phytodienoic acid (OPDA) in untreated wild-type and opr3 leaves, but an undetectable expression of AOC. Upon wounding opr3 leaves exhibited only low expression of AOC, wounded wild-type leaves, however, accumulated JA and AOC mRNA. These and further data suggest regulation of JA biosynthesis by OPDA compartmentalization and a positive feedback by JA during leaf development.