Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Engler, C.; Youles, M.; Gruetzner, R.; Ehnert, T.-M.; Werner, S.; Jones, J. D. G.; Patron, N. J.; Marillonnet, S.;A Golden Gate Modular Cloning Toolbox for PlantsACS Synth. Biol.3839-843(2014)DOI: 10.1021/sb4001504
Plant Synthetic Biology requires robust and efficient methods for assembling multigene constructs. Golden Gate cloning provides a precision module-based cloning technique for facile assembly of multiple genes in one construct. We present here a versatile resource for plant biologists comprising a set of cloning vectors and 96 standardized parts to enable Golden Gate construction of multigene constructs for plant transformation. Parts include promoters, untranslated sequences, reporters, antigenic tags, localization signals, selectable markers, and terminators. The comparative performance of parts in the model plant Nicotiana benthamiana is discussed.
Publikation
Schneider, J. D.; Marillonnet, S.; Castilho, A.; Gruber, C.; Werner, S.; Mach, L.; Klimyuk, V.; Mor, T. S.; Steinkellner, H.;Oligomerization status influences subcellular deposition and glycosylation of recombinant butyrylcholinesterase in Nicotiana benthamianaPlant Biotechnol. J.12832-839(2014)DOI: 10.1111/pbi.12184
Plants have a proven track record for the expression of biopharmaceutically interesting proteins. Importantly, plants and mammals share a highly conserved secretory pathway that allows similar folding, assembly and posttranslational modifications of proteins. Human butyrylcholinesterase (BChE) is a highly sialylated, tetrameric serum protein, investigated as a bioscavenger for organophosphorous nerve agents. Expression of recombinant BChE (rBChE) in Nicotiana benthamiana results in accumulation of both monomers as well as assembled oligomers. In particular, we show here that co‐expression of BChE with a novel gene‐stacking vector, carrying six mammalian genes necessary for in planta protein sialylation, resulted in the generation of rBChE decorated with sialylated N‐glycans. The N‐glycosylation profile of monomeric rBChE secreted to the apoplast largely resembles the plasma‐derived orthologue. In contrast, rBChE purified from total soluble protein extracts was decorated with a significant portion of ER‐typical oligomannosidic structures. Biochemical analyses and live‐cell imaging experiments indicated that impaired N‐glycan processing is due to aberrant deposition of rBChE oligomers in the endoplasmic reticulum or endoplasmic‐reticulum‐derived compartments. In summary, we show the assembly of rBChE multimers, however, also points to the need for in‐depth studies to explain the unexpected subcellular targeting of oligomeric BChE in plants.
Publikation
Weber, E.; Gruetzner, R.; Werner, S.; Engler, C.; Marillonnet, S.;Assembly of Designer TAL Effectors by Golden Gate CloningPLOS ONE6e19722(2011)DOI: 10.1371/journal.pone.0019722
Generation of customized DNA binding domains targeting unique sequences in complex genomes is crucial for many biotechnological applications. The recently described DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas consists of a series of repeats arranged in tandem, each repeat binding a nucleotide of the target sequence. We present here a strategy for engineering of TALE proteins with novel DNA binding specificities based on the 17.5 repeat-containing AvrBs3 TALE as a scaffold. For each of the 17 full repeats, four module types were generated, each with a distinct base preference. Using this set of 68 repeat modules, recognition domains for any 17 nucleotide DNA target sequence of choice can be constructed by assembling selected modules in a defined linear order. Assembly is performed in two successive one-pot cloning steps using the Golden Gate cloning method that allows seamless fusion of multiple DNA fragments. Applying this strategy, we assembled designer TALEs with new target specificities and tested their function in vivo.
Publikation
Weber, E.; Engler, C.; Gruetzner, R.; Werner, S.; Marillonnet, S.;A Modular Cloning System for Standardized Assembly of Multigene ConstructsPLOS ONE6e16765(2011)DOI: 10.1371/journal.pone.0016765
The field of synthetic biology promises to revolutionize biotechnology through the design of organisms with novel phenotypes useful for medicine, agriculture and industry. However, a limiting factor is the ability of current methods to assemble complex DNA molecules encoding multiple genetic elements in various predefined arrangements. We present here a hierarchical modular cloning system that allows the creation at will and with high efficiency of any eukaryotic multigene construct, starting from libraries of defined and validated basic modules containing regulatory and coding sequences. This system is based on the ability of type IIS restriction enzymes to assemble multiple DNA fragments in a defined linear order. We constructed a 33 kb DNA molecule containing 11 transcription units made from 44 individual basic modules in only three successive cloning steps. This modular cloning (MoClo) system can be readily automated and will be extremely useful for applications such as gene stacking and metabolic engineering.