Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Three previously undescribed azepino-indole alkaloids, named purpurascenines A−C (1−3), together with the new-to-nature 7-hydroxytryptophan (4) as well as two known compounds, adenosine (5) and riboflavin (6), were isolated from fruiting bodies of Cortinarius purpurascens Fr. (Cortinariaceae). The structures of 1−3 were elucidated based on spectroscopic analyses and ECD calculations. Furthermore, the biosynthesis of purpurascenine A (1) was investigated by in vivo experiments using 13C-labeled sodium pyruvate, alanine, and sodium acetate incubated with fruiting bodies of C. purpurascens. The incorporation of 13C into 1 was analyzed using 1D NMR and HRESIMS methods. With [3-13C]-pyruvate, a dramatic enrichment of 13C was observed, and hence a biosynthetic route via a direct Pictet−Spengler reaction between α-keto acids and 7-hydroxytryptophan (4) is suggested for the biosynthesis of purpurascenines A−C (1−3). Compound 1 exhibits no antiproliferative or cytotoxic effects against human prostate (PC-3), colorectal (HCT-116), and breast (MCF-7) cancer cells. An in silico docking study confirmed the hypothesis that purpurascenine A (1) could bind to the 5-HT2A serotonin receptor’s active site. A new functional 5-HT2A receptor activation assay showed no functional agonistic but some antagonistic effects of 1 against the 5-HT-dependent 5-HT2A activation and likely antagonistic effects on putative constitutive activity of the 5-HT2A receptor.
Publikation
Zanatta, N.; Mittersteiner, M.; Aquino, E. C.; Budragchaa, T.; Wessjohann, L. A.; Bonacorso, H. G.; Martins, M. A. P.;Synthesis of methylene-bridged trifluoromethyl azoles using 5-(1,2,3-Triazol-1-yl)enonesSynthesis54439-450(2022)DOI: 10.1055/s-0040-1719837
A protocol for synthesizing triazole-containing pyrazolines and pyrazoles selectively using trifluoromethylated 5-(1,2,3-triazol-1-yl)enones as starting materials, is reported. The selectivity of the reaction was controlled by the nature of the hydrazine or derivative used: free hydrazines furnished the 1,5-regiosiomer exclusively in yields up to 98%, whereas protected hydrazines provided the 1,3-regioisomer in yields up to 77%. To demonstrate the synthetic versatility of the triazole-based enone, reactions with other unsymmetrical dinucleophiles (hydroxylamine hydrochloride and S-methyl isothiourea sulfates) allowed the selective preparation of triazole-containing isoxazoline and pyrimidine rings.
Publikation
Otto, A.; Porzel, A.; Schmidt, J.; Brandt, W.; Wessjohann, L.; Arnold, N.;Structure and Absolute Configuration of Pseudohygrophorones A12 and B12, Alkyl Cyclohexenone Derivatives from Hygrophorus abieticola (Basidiomycetes)J. Nat. Prod.7974-80(2016)DOI: 10.1021/acs.jnatprod.5b00675
Pseudohygrophorones A(12) (1) and B(12) (2), the first naturally occurring alkyl cyclohexenones from a fungal source, and the recently reported hygrophorone B(12) (3) have been isolated from fruiting bodies of the basidiomycete Hygrophorus abieticola Krieglst. ex Gröger & Bresinsky. Their structures were assigned on the basis of extensive one- and two-dimensional NMR spectroscopic analysis as well as ESI-HRMS measurements. The absolute configuration of the three stereogenic centers in the diastereomeric compounds 1 and 2 was established with the aid of (3)JH,H and (4)JH,H coupling constants, NOE interactions, and conformational analysis in conjunction with quantum chemical CD calculations. It was concluded that pseudohygrophorone A(12) (1) is 4S,5S,6S configured, while pseudohygrophorone B(12) (2) was identified as the C-6 epimer of 1, corresponding to the absolute configuration 4S,5S,6R. In addition, the mass spectrometric fragmentation behavior of 1-3 obtained by the higher energy collisional dissociation method allows a clear distinction between the pseudohygrophorones (1 and 2) and hygrophorone B(12) (3). The isolated compounds 1-3 exhibited pronounced activity against phytopathogenic organisms.
Publikation
Otto, A.; Laub, A.; Wendt, L.; Porzel, A.; Schmidt, J.; Palfner, G.; Becerra, J.; Krüger, D.; Stadler, M.; Wessjohann, L.; Westermann, B.; Arnold, N.;Chilenopeptins A and B, Peptaibols from the Chilean Sepedonium aff. chalcipori KSH 883J. Nat. Prod.79929-938(2016)DOI: 10.1021/acs.jnatprod.5b01018
The Chilean Sepedonium aff. chalcipori strain KSH 883, isolated from the endemic Boletus loyo Philippi, was studied in a polythetic approach based on chemical, molecular, and biological data. A taxonomic study of the strain using molecular data of the ITS, EF1-α, and RPB2 barcoding genes confirmed the position of the isolated strain within the S. chalcipori clade, but also suggested the separation of this clade into three different species. Two new linear 15-residue peptaibols, named chilenopeptins A (1) and B (2), together with the known peptaibols tylopeptins A (3) and B (4) were isolated from the semisolid culture of strain KSH 883. The structures of 1 and 2 were elucidated on the basis of HRESIMS(n) experiments in conjunction with comprehensive 1D and 2D NMR analysis. Thus, the sequence of chilenopeptin A (1) was identified as Ac-Aib(1)-Ser(2)-Trp(3)-Aib(4)-Pro(5)-Leu(6)-Aib(7)-Aib(8)-Gln(9)-Aib(10)-Aib(11)-Gln(12)-Aib(13)-Leu(14)-Pheol(15), while chilenopeptin B (2) differs from 1 by the replacement of Trp(3) by Phe(3). Additionally, the total synthesis of 1 and 2 was accomplished by a solid-phase approach, confirming the absolute configuration of all chiral amino acids as l. Both the chilenopeptins (1 and 2) and tylopeptins (3 and 4) were evaluated for their potential to inhibit the growth of phytopathogenic organisms.