Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Zanatta, N.; Mittersteiner, M.; Aquino, E. C.; Budragchaa, T.; Wessjohann, L. A.; Bonacorso, H. G.; Martins, M. A. P.;Synthesis of methylene-bridged trifluoromethyl azoles using 5-(1,2,3-Triazol-1-yl)enonesSynthesis54439-450(2022)DOI: 10.1055/s-0040-1719837
A protocol for synthesizing triazole-containing pyrazolines and pyrazoles selectively using trifluoromethylated 5-(1,2,3-triazol-1-yl)enones as starting materials, is reported. The selectivity of the reaction was controlled by the nature of the hydrazine or derivative used: free hydrazines furnished the 1,5-regiosiomer exclusively in yields up to 98%, whereas protected hydrazines provided the 1,3-regioisomer in yields up to 77%. To demonstrate the synthetic versatility of the triazole-based enone, reactions with other unsymmetrical dinucleophiles (hydroxylamine hydrochloride and S-methyl isothiourea sulfates) allowed the selective preparation of triazole-containing isoxazoline and pyrimidine rings.
Publikation
Wasternack, C.;Termination in Jasmonate Signaling by MYC2 and MTBsTrends Plant Sci.24667-669(2019)DOI: 10.1016/j.tplants.2019.06.001
Jasmonic acid (JA) signaling can be switched off by metabolism of JA. The master regulator MYC2, interacting with MED25, has been shown to be deactivated by the bHLH transcription factors MTB1, MTB2, and MTB3. An autoregulatory negative feedback loop has been proposed for this termination in JA signaling.
Publikation
Wasternack, C.;New Light on Local and Systemic Wound SignalingTrends Plant Sci.24102-105(2019)DOI: 10.1016/j.tplants.2018.11.009
Electric signaling and Ca2+ waves were discussed to occur in systemic wound responses. Two new overlapping scenarios were identified: (i) membrane depolarization in two special cell types followed by an increase in systemic cytoplasmic Ca2+ concentration ([Ca2+]cyt), and (ii) glutamate sensed by GLUTAMATE RECEPTOR LIKE proteins and followed by Ca2+-based defense in distal leaves.
Publikation
Ferlian, O.; Biere, A.; Bonfante, P.; Buscot, F.; Eisenhauer, N.; Fernandez, I.; Hause, B.; Herrmann, S.; Krajinski-Barth, F.; Meier, I. C.; Pozo, M. J.; Rasmann, S.; Rillig, M. C.; Tarkka, M. T.; van Dam, N. M.; Wagg, C.; Martinez-Medina, A.;Growing Research Networks on Mycorrhizae for Mutual BenefitsTrends Plant Sci.23975-984(2018)DOI: 10.1016/j.tplants.2018.08.008
Research on mycorrhizal interactions has traditionally developed into separate disciplines addressing different organizational levels. This separation has led to an incomplete understanding of mycorrhizal functioning. Integration of mycorrhiza research at different scales is needed to understand the mechanisms underlying the context dependency of mycorrhizal associations, and to use mycorrhizae for solving environmental issues. Here, we provide a road map for the integration of mycorrhiza research into a unique framework that spans genes to ecosystems. Using two key topics, we identify parallels in mycorrhiza research at different organizational levels. Based on two current projects, we show how scientific integration creates synergies, and discuss future directions. Only by overcoming disciplinary boundaries, we will achieve a more comprehensive understanding of the functioning of mycorrhizal associations.