Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Schreiber, T.; Tripathee, S.; Iwen, T.; Prange, A.; Vahabi, K.; Grützner, R.; Horn, C.; Marillonnet, S.; Tissier, A.;DNA double strand breaks lead to de novo transcription and translation of damage-induced long RNAs in plantabioRxiv(2022)DOI: 10.1101/2022.05.11.491484
DNA double strand breaks (DSBs) are lethal threats that need to be repaired. Although many of the proteins involved in the early steps of DSB repair have been characterized, recent reports indicate that damage induced long and small RNAs also play an important role in DSB repair. Here, using a Nicotiana benthamiana transgenic line originally designed as a reporter for targeted knock-ins, we show that DSBs generated by Cas9 induce the transcription of long stable RNAs (damage-induced long RNAs - dilRNAs) that are translated into proteins. Using an array of single guide RNAs we show that the initiation of transcription takes place in the vicinity of the DSB. Single strand DNA nicks are not able to induce transcription, showing that cis DNA damage-induced transcription is specific for DSBs. Our results support a model in which a default and early event in the processing of DSBs is transcription into RNA which, depending on the genomic and genic context, can undergo distinct fates, including translation into protein, degradation or production of small RNAs. Our results have general implications for understanding the role of transcription in the repair of DSBs and, reciprocally, reveal DSBs as yet another way to regulate gene expression.
Preprints
Zabel, S.; Brandt, W.; Porzel, A.; Athmer, B.; Kortbeek, R. W. J.; Bleeker, P. M.; Tissier, A.;Two novel 7-epi-zingiberene derivatives with biological activity from Solanum habrochaites are produced by a single cytochrome P450 monooxygenasebioRxiv(2020)DOI: 10.1101/2020.04.21.052571
Secretions from glandular trichomes potentially protect the plant against a variety of aggressors. In the tomato genus, wild species constitute a rich source of chemical diversity produced at the leaf surface by glandular trichomes. Previously, 7-epi-zingiberene produced in several accessions of Solanum habrochaites was found to confer resistance to whiteflies (Bemisia tabaci) and other insect pests. Here, we identify two derivatives of 7-epi-zingiberene from S. habrochaites that had not been reported as yet. We identified them as 9-hydroxy-zingiberene and 9-hydroxy-10,11-epoxyzingiberene. Using a combination of genetics and transcriptomics we identified a single cytochrome P450 oxygenase, ShCYP71D184 that carries out two successive oxidations to generate the two sesquiterpenoids. Bioactivity assays showed that only 9-hydroxy-10,11-epoxyzingiberene exhibits substantial toxicity against B. tabaci. In addition, both 9-hydroxy-zingiberene and 9-hydroxy-10,11-epoxyzingiberene display substantial growth inhibitory activities against a range of microorganisms, including Bacillus subtilis, Phytophtora infestans and Botrytis cinerea. Our work shows that trichome secretions from wild tomato species can provide protection against a wide variety of organisms. In addition, the availability of the genes encoding the enzymes for the pathway of 7-epi-zingiberene derivatives makes it possible to introduce this trait in cultivated tomato by precision breeding.
Preprints
Dunker, F.; Trutzenberg, A.; Rothenpieler, J. S.; Kuhn, S.; Pröls, R.; Schreiber, T.; Tissier, A.; Hückelhoven, R.; Weiberg, A.;Oomycete small RNAs invade the plant RNA-induced silencing complex for virulencebioRxiv(2019)DOI: 10.1101/689190
Fungal small RNAs (sRNAs) hijack the plant RNA silencing pathway to manipulate host gene expression, named cross-kingdom RNA interference (ckRNAi). It is currently unknown how conserved and significant ckRNAi is for microbial virulence. Here, we found for the first time that sRNAs of a pathogen representing the oomycete kingdom invade the host plant’s Argonaute (AGO)/RNA-induced silencing complex. To demonstrate the functionality of the plant-invading oomycete Hyaloperonospora arabidopsidis sRNAs (HpasRNAs), we designed a novel CRISPR endoribonuclease Csy4/GUS repressor reporter to visualize in situ pathogen-induced target suppression in Arabidopsis thaliana host plant. By using 5’ RACE-PCR we demonstrated HpasRNAs-directed cleavage of plant mRNAs. The significant role of HpasRNAs together with AtAGO1 in virulence was demonstrated by plant atago1 mutants and by transgenic Arabidopsis expressing a target mimic to block HpasRNAs, that both exhibited enhanced resistance. Individual HpasRNA plant targets contributed to host immunity, as Arabidopsis gene knockout or HpasRNA-resistant gene versions exhibited quantitative enhanced or reduced susceptibility, respectively. Together with previous reports, we found that ckRNAi is conserved among oomycete and fungal pathogens.