Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Schuster, M.; Eisele, S.; Armas-Egas, L.; Kessenbrock, T.; Kourelis, J.; Kaiser, M.; Hoorn, R. A.;Enhanced late blight resistance by engineering an EpiC2B‐insensitive immune proteasePlant Biotechnol. J.22284-286(2024)DOI: 10.1111/pbi.14209
Hashemi Haeri, H.; Schneegans, N.; Eisenschmidt-Bönn, D.; Brandt, W.; Wittstock, U.; Hinderberger, D.;Characterization of the active site in the thiocyanate-forming protein from Thlaspi arvense (TaTFP) using EPR spectroscopyBiol. Chem.405105-118(2024)DOI: 10.1515/hsz-2023-0187
Glucosinolates are plant thioglucosides, which act as chemical defenses. Upon tissue damage, their myrosinase-catalyzed hydrolysis yields aglucones that rearrange to toxic isothiocyanates. Specifier proteins such as thiocyanate-forming protein from Thlaspi arvense (TaTFP) are non-heme iron proteins, which capture the aglucone to form alternative products, e.g. nitriles or thiocyanates. To resolve the electronic state of the bound iron cofactor in TaTFP, we applied continuous wave electron paramagnetic resonance (CW EPR) spectroscopy at X-and Q-band frequencies (∼9.4 and ∼34 GHz). We found characteristic features of high spin and low spin states of a d5 electronic configuration and local rhombic symmetry during catalysis. We monitored the oxidation states of bound iron during conversion of allylglucosinolate by myrosinase and TaTFP in presence and absence of supplemented Fe2+. Without added Fe2+, most high spin features of bound Fe3+ were preserved, while different g’-values of the low spin part indicated slight rearrangements in the coordination sphere and/or structural geometry. We also examined involvement of the redox pair Fe3+/Fe2 in samples with supplemented Fe2+. The absence of any EPR signal related to Fe3+ or Fe2+ using an iron-binding deficient TaTFP variant allowed us to conclude that recorded EPR signals originated from the bound iron cofactor.
Transient expression in Nicotiana benthamiana offers a robust platform for the rapid production of complex secondary metabolites. It has proven highly effective in helping identify genes associated with pathways responsible for synthesizing various valuable natural compounds. While this approach has seen considerable success, it has yet to be applied to uncovering genes involved in anthocyanin biosynthetic pathways. This is because only a single anthocyanin, delphinidin 3‐O‐rutinoside, can be produced in N. benthamiana by activation of anthocyanin biosynthesis using transcription factors. The production of other anthocyanins would necessitate the suppression of certain endogenous flavonoid biosynthesis genes while transiently expressing others. In this work, we present a series of tools for the reconstitution of anthocyanin biosynthetic pathways in N. benthamiana leaves. These tools include constructs for the expression or silencing of anthocyanin biosynthetic genes and a mutant N. benthamiana line generated using CRISPR. By infiltration of defined sets of constructs, the basic anthocyanins pelargonidin 3‐O‐glucoside, cyanidin 3‐O‐glucoside and delphinidin 3‐O‐glucoside could be obtained in high amounts in a few days. Additionally, co‐infiltration of supplementary pathway genes enabled the synthesis of more complex anthocyanins. These tools should be useful to identify genes involved in the biosynthesis of complex anthocyanins. They also make it possible to produce novel anthocyanins not found in nature. As an example, we reconstituted the pathway for biosynthesis of Arabidopsis anthocyanin A5, a cyanidin derivative and achieved the biosynthesis of the pelargonidin and delphinidin variants of A5, pelargonidin A5 and delphinidin A5.
Publikation
Peters, K.; Blatt-Janmaat, K. L.; Tkach, N.; Dam, N. M.; Neumann, S.;Untargeted metabolomics for integrative taxonomy: Metabolomics, DNA marker-based sequencing, and phenotype bioimagingPlants12881(2023)DOI: 10.3390/plants12040881
Integrative taxonomy is a fundamental part of biodiversity and combines traditional morphology with additional methods such as DNA sequencing or biochemistry. Here, we aim to establish untargeted metabolomics for use in chemotaxonomy. We used three thallose liverwort species Riccia glauca, R. sorocarpa, and R. warnstorfii (order Marchantiales, Ricciaceae) with Lunularia cruciata (order Marchantiales, Lunulariacea) as an outgroup. Liquid chromatography high-resolution mass-spectrometry (UPLC/ESI-QTOF-MS) with data-dependent acquisition (DDA-MS) were integrated with DNA marker-based sequencing of the trnL-trnF region and high-resolution bioimaging. Our untargeted chemotaxonomy methodology enables us to distinguish taxa based on chemophenetic markers at different levels of complexity: (1) molecules, (2) compound classes, (3) compound superclasses, and (4) molecular descriptors. For the investigated Riccia species, we identified 71 chemophenetic markers at the molecular level, a characteristic composition in 21 compound classes, and 21 molecular descriptors largely indicating electron state, presence of chemical motifs, and hydrogen bonds. Our untargeted approach revealed many chemophenetic markers at different complexity levels that can provide more mechanistic insight into phylogenetic delimitation of species within a clade than genetic-based methods coupled with traditional morphology-based information. However, analytical and bioinformatics analysis methods still need to be better integrated to link the chemophenetic information at multiple scales.