Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Tanemossu, S. A. F.; Franke, K.; Arnold, N.; Schmidt, J.; Wabo, H. K.; Tane, P.; Wessjohann, L. A.;Rare biscoumarin derivatives and flavonoids from Hypericum ripariumPhytochemistry105171-177(2014)DOI: 10.1016/j.phytochem.2014.05.008
Hypericum riparium A. Chev. is a Cameroonian medicinal plant belonging to the family Guttiferae. Chemical investigation of the methanol extract of the stem bark of H. riparium led to the isolation of four natural products, 7,7′-dihydroxy-6,6′-biscoumarin (1), 7,7′-dihydroxy-8,8′-biscoumarin (2), 7-methoxy-6,7′-dicoumarinyl ether (3), 2′-hydroxy-5′-(7″-methoxycoumarin-6″-yl)-4′-methoxyphenylpropanoic acid (4), together with one known 7,7′-dimethoxy-6,6′-biscoumarin (5), two flavones, 2′-methoxyflavone (6) and 3′-methoxy flavone (7), and two steroids, stigmast-4-en-3-one (8) and ergosta-4,6,8,22-tetraen-3-one (9). In addition, tetradecanoic acid (10), n-pentadecanoic acid (11), hexadecanoic acid (12), cis-10-heptadecenoic acid (13), octadecanoic acid (14) campesterol (15), stigmasterol (16), β-sitosterol (17), stigmastanol (18), β-eudesmol (19), 1-hexadecanol (20), and 1-octadecanol (21) were identified by GC–MS analysis. Compound 4 consists of a phenylpropanoic acid derivative fused with a coumarin unit, while compounds 2 and 3 are rare members of C8–C8′ and C7–O–C6 linked biscoumarins. Their structures were elucidated by UV, IR, extensive 1D- and 2D-NMR experiments and electrospray (ESI) high resolution mass spectrometry (MS) including detailed MS/MS studies. This is the first report on the isolation of biscoumarins from the genus Hypericum, although simple coumarin derivatives have been reported from this genus in the literature. The cytotoxic activities of compounds 2–5 were evaluated against the human prostate cancer cell line PC-3 and the colon cancer cell line HT-29. They do not exhibit any significant cytotoxic activity.
Publikation
Strehmel, N.; Böttcher, C.; Schmidt, S.; Scheel, D.;Profiling of secondary metabolites in root exudates of Arabidopsis thalianaPhytochemistry10835-46(2014)DOI: 10.1016/j.phytochem.2014.10.003
To explore the chemical composition of root exudates of the model plant Arabidopsis thaliana a workflow for nontargeted metabolite profiling of the semipolar fraction of root exudates was developed. It comprises hydroponic plant cultivation and sampling of root exudates under sterile conditions, sample preparation by solid-phase extraction and analysis by reversed-phase UPLC/ESI-QTOFMS. Following the established workflow, root exudates of six-week-old plants were profiled and a set of reproducibly occurring molecular features was compiled. To structurally elucidate the corresponding metabolites, accurate mass tandem mass spectrometry and on-line hydrogen/deuterium exchange were applied. Currently, a total of 103 compounds were detected and annotated by elemental composition of which more than 90 were structurally characterized or classified. Among them, 42 compounds were rigorously identified using an authenticated standard. The compounds identified so far include nucleosides, deoxynucleosides, aromatic amino acids, anabolites and catabolites of glucosinolates, dipeptides, indolics, salicylic and jasmonic acid catabolites, coumarins, mono-, di- and trilignols, hydroxycinnamic acid derivatives and oxylipins and exemplify the high chemical diversity of plant root exudates.
Publikation
Floková, K.; Tarkowská, D.; Miersch, O.; Strnad, M.; Wasternack, C.; Novák, O.;UHPLC–MS/MS based target profiling of stress-induced phytohormonesPhytochemistry105147-157(2014)DOI: 10.1016/j.phytochem.2014.05.015
Stress-induced changes in phytohormone metabolite profiles have rapid effects on plant metabolic activity and growth. The jasmonates (JAs) are a group of fatty acid-derived stress response regulators with roles in numerous developmental processes. To elucidate their dual regulatory effects, which overlap with those of other important defence-signalling plant hormones such as salicylic acid (SA), abscisic acid (ABA) and indole-3-acetic acid (IAA), we have developed a highly efficient single-step clean-up procedure for their enrichment from complex plant matrices that enables their sensitive quantitative analysis using hyphenated mass spectrometry technique. The rapid extraction of minute quantities of plant material (less than 20 mg fresh weight, FW) into cold 10% methanol followed by one-step reversed-phase polymer-based solid phase extraction significantly reduced matrix effects and increased the recovery of labile JA analytes. This extraction and purification protocol was paired with a highly sensitive and validated ultra-high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method and used to simultaneously profile sixteen stress-induced phytohormones in minute plant material samples, including endogenous JA, several of its biosynthetic precursors and derivatives, as well as SA, ABA and IAA.
Publikation
El Senousy, A. S.; Farag, M. A.; Al-Mahdy, D. A.; Wessjohann, L. A.;Developmental changes in leaf phenolics composition from three artichoke cvs. (Cynara scolymus) as determined via UHPLC–MS and chemometricsPhytochemistry10867-76(2014)DOI: 10.1016/j.phytochem.2014.09.004
The metabolomic differences in phenolics from leaves derived from 3 artichoke cultivars (Cynara scolymus): American Green Globe, French Hyrious and Egyptian Baladi, collected at different developmental stages, were assessed using UHPLC–MS coupled to chemometrics. Ontogenic changes were considered as leaves were collected at four different time intervals and positions (top and basal) during artichoke development. Unsupervised principal component analysis (PCA) and supervised orthogonal projection to latent structures-discriminant analysis (O2PLS-DA) were used for comparing and classification of samples harvested from different cultivars at different time points and positions. A clear separation among the three investigated cultivars was revealed, with the American Green Globe samples found most enriched in caffeic acid conjugates and flavonoids vs. other cultivars. Furthermore, these metabolites also showed a marked effect on the discrimination between leaf samples from cultivars harvested at different positions, regardless of the plant age. Metabolite absolute quantifications further confirmed that discrimination was mostly influenced by phenolic compounds, namely caffeoylquinic acids and flavonoids. This study demonstrates an effect of artichoke leaf position, regardless of plant age, on its secondary metabolites composition. To the best of our knowledge, this is the first report for compositional differences among artichoke leaves, based on their positions, via a metabolomic approach and suggesting that top positioned artichoke leaves present a better source of caffeoylquinic acids, compared to basal ones.