Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Noleto‐Dias, C.; Farag, M. A.; Porzel, A.; Tavares, J. F.; Wessjohann, L. A.;A multiplex approach of MS, 1D‐, and 2D‐NMR metabolomics in plant ontogeny: A case study on Clusia minor L. organs (leaf, flower, fruit, and seed)Phytochem. Anal.35445-468(2024)DOI: 10.1002/pca.3300
Introduction: The genus Clusia L. is mostly recognised for the production of prenylated benzophenones and tocotrienol derivatives.Objectives: The objective of this study was to map metabolome variation within Clusia minor organs at different developmental stages.Material and Methods: In total 15 organs/stages (leaf, flower, fruit, and seed) were analysed by UPLC‐MS and 1H‐ and heteronuclear multiple‐bond correlation (HMBC)‐NMR‐based metabolomics.Results: This work led to the assignment of 46 metabolites, belonging to organic acids(1), sugars(2) phenolic acids(1), flavonoids(3) prenylated xanthones(1) benzophenones(4) and tocotrienols(2). Multivariate data analyses explained the variability and classification of samples, highlighting chemical markers that discriminate each organ/stage. Leaves were found to be rich in 5‐hydroxy‐8‐methyltocotrienol (8.5 μg/mg f.w.), while flowers were abundant in the polyprenylated benzophenone nemorosone with maximum level detected in the fully mature flower bud (43 μg/mg f.w.). Nemorosone and 5‐hydroxy tocotrienoloic acid were isolated from FL6 for full structural characterisation. This is the first report of the NMR assignments of 5‐hydroxy tocotrienoloic acid, and its maximum level was detected in the mature fruit at 50 μg/mg f.w. Seeds as typical storage organ were rich in sugars and omega‐6 fatty acids.Conclusion: To the best of our knowledge, this is the first report on a comparative 1D‐/2D‐NMR approach to assess compositional differences in ontogeny studies compared with LC‐MS exemplified by Clusia organs. Results derived from this study provide better understanding of the stages at which maximal production of natural compounds occur and elucidate in which developmental stages the enzymes responsible for the production of such metabolites are preferentially expressed.
Publikation
Picchianti, L.; Sanchez de Medina Hernandez, V.; Zhan, N.; Irwin, N. A.; Groh, R.; Stephani, M.; Hornegger, H.; Beveridge, R.; Sawa‐Makarska, J.; Lendl, T.; Grujic, N.; Naumann, C.; Martens, S.; Richards, T. A.; Clausen, T.; Ramundo, S.; Karagöz, G. E.; Dagdas, Y.;Shuffled ATG8 interacting motifs form an ancestral bridge between UFMylation and autophagyEMBO J.42e112053(2023)DOI: 10.15252/embj.2022112053
UFMylation involves the covalent modification of substrate proteins with UFM1 (Ubiquitin-fold modifier 1) and is important for maintaining ER homeostasis. Stalled translation triggers the UFMylation of ER-bound ribosomes and activates C53-mediated autophagy to clear toxic polypeptides. C53 contains noncanonical shuffled ATG8-interacting motifs (sAIMs) that are essential for ATG8 interaction and autophagy initiation. However, the mechanistic basis of sAIM-mediated ATG8 interaction remains unknown. Here, we show that C53 and sAIMs are conserved across eukaryotes but secondarily lost in fungi and various algal lineages. Biochemical assays showed that the unicellular alga Chlamydomonas reinhardtii has a functional UFMylation pathway, refuting the assumption that UFMylation is linked to multicellularity. Comparative structural analyses revealed that both UFM1 and ATG8 bind sAIMs in C53, but in a distinct way. Conversion of sAIMs into canonical AIMs impaired binding of C53 to UFM1, while strengthening ATG8 binding. Increased ATG8 binding led to the autoactivation of the C53 pathway and sensitization of Arabidopsis thaliana to ER stress. Altogether, our findings reveal an ancestral role of sAIMs in UFMylation-dependent fine-tuning of C53-mediated autophagy activation.
Publikation
Ai, H.; Bellstaedt, J.; Bartusch, K. S.; Eschen‐Lippold, L.; Babben, S.; Balcke, G. U.; Tissier, A.; Hause, B.; Andersen, T. G.; Delker, C.; Quint, M.;Auxin‐dependent regulation of cell division rates governs root thermomorphogenesisEMBO J.42e111926(2023)DOI: 10.15252/embj.2022111926
Roots are highly plastic organs enabling plants to adapt to a changing below-ground environment. In addition to abiotic factors like nutrients or mechanical resistance, plant roots also respond to temperature variation. Below the heat stress threshold, Arabidopsis thaliana seedlings react to elevated temperature by promoting primary root growth, possibly to reach deeper soil regions with potentially better water saturation. While above-ground thermomorphogenesis is enabled by thermo-sensitive cell elongation, it was unknown how temperature modulates root growth. We here show that roots are able to sense and respond to elevated temperature independently of shoot-derived signals. This response is mediated by a yet unknown root thermosensor that employs auxin as a messenger to relay temperature signals to the cell cycle. Growth promotion is achieved primarily by increasing cell division rates in the root apical meristem, depending on de novo local auxin biosynthesis and temperature-sensitive organization of the polar auxin transport system. Hence, the primary cellular target of elevated ambient temperature differs fundamentally between root and shoot tissues, while the messenger auxin remains the same.
Publikation
Chalo, D. M.; Kakudidi, E.; Origa-Oryem, H.; Namukobe, J.; Franke, K.; Yenesew, A.; Wessjohann, L. A.;Chemical constituents of the roots of Ormocarpum sennoides subsp. zanzibaricumBiochem. Syst. Ecol.93104142(2020)DOI: 10.1016/j.bse.2020.104142
Phytochemical investigation of the roots of O. sennoides subsp. zanzibaricum Brenan & J.B. Gillett resulted in the isolation of three biflavonoids (trime-chamaejasmin, (+)- chamaejasmin, (+)-liquiritigeninyl-(I-3,II-3)-naringenin), one bi-4-phenyldihydrocoumarin (diphysin), one isoflavan (glabridin), one triterpenoid (3-O-acetyloleanoic acid) and a phytosterol (β-sitosterol). Compounds were identified by detailed MS, 1D and 2D NMR spectroscopic analyses. Their absolute configurations were elucidated based on ECD spectra. The previously undescribed trime-chamaejasmin represents a bis-epi-chamaejasmenin C diastereomer. The chemophenetic significance is discussed in detail. The results contribute to the phytochemical characterization of the genus Ormocarpum and suggest a close chemophenetic relationship with other genera within the subfamily Papilionoideae. Furthermore, this report provides baseline data for comparing the two infraspecific taxa of O. sennoides (Willd.) DC.