Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Prasad, A.; Breithaupt, C.; Nguyen, D.-A.; Lilie, H.; Ziegler, J.; Stubbs, M. T.;Mechanism of chorismate dehydratase MqnA, the first enzyme of the futalosine pathway, proceeds via substrate-assisted catalysisJ. Biol. Chem.298102601(2022)DOI: 10.1016/j.jbc.2022.102601
MqnA, the only chorismate dehydratase known so far, catalyzes the initial step in the biosynthesis of menaquinone via the futalosine pathway. Details of the MqnA reaction mechanism remain unclear. Here, we present crystal structures of Streptomyces coelicolor MqnA and its active site mutants in complex with chorismate and the product 3-enolpyruvyl-benzoate, produced during heterologous expression in Escherichia coli. Together with activity studies, our data are in line with dehydration proceeding via substrate assisted catalysis, with the enol pyruvyl group of chorismate acting as catalytic base. Surprisingly, structures of the mutant Asn17Asp with copurified ligand suggest that the enzyme converts to a hydrolase by serendipitous positioning of the carboxyl group. All complex structures presented here exhibit a closed Venus flytrap fold, with the enzyme exploiting the characteristic ligand binding properties of the fold for specific substrate binding and catalysis. The conformational rearrangements that facilitate complete burial of substrate/product, with accompanying topological changes to the enzyme surface, could foster substrate channeling within the biosynthetic pathway.
Publikation
Vasco, A. V.; Ceballos, L. G.; Wessjohann, L. A.; Rivera, D. G.;Multicomponent functionalization of the octreotide peptide macrocyclic scaffoldEur. J. Org. Chem.2022e202200687(2022)DOI: 10.1002/ejoc.202200687
The replacement of the disulfide bridge by other types of side chain linkages has been a continuous endeavor in the development of cyclic peptide drugs with improved metabolic stability. Octreotide is a potent and selective somatostatin analog that has been used as an anticancer agent, in radiolabeled conjugates for the localization of tumors and as targeting moiety in peptide-drug conjugates. Here, we describe an onresin methodology based on a multicomponent macrocyclization that enables the substitution of the disulfide bond by a tertiary lactam bridge functionalized with a variety of exocyclic moieties, including lipids, fluorophores, and charged groups. Conformational analysis in comparison with octreotide provides key information on the type of functionalization permitting the conformational mimicry of the bioactive peptide.
Publikation
Ditfe, T.; Bette, E.; N. Sultani, H.; Otto, A.; Wessjohann, L. A.; Arnold, N.; Westermann, B.;Synthesis and biological evaluation of highly potent fungicidal deoxy‐hygrophoronesEur. J. Org. Chem.20213827-3836(2021)DOI: 10.1002/ejoc.202100729
Although stripped from hydroxyl-groups, deoxygenated
hygrophorones remain highly active against severe phytopathogens. The
synthesis to these natural product congeners is achieved in
rearrangement sequences, with an optimized deprotection strategy
avoiding retro-aldol reactions. The activities are comparable to
fungicides used in agriculture.
Based on naturally occurring hygrophorones, racemic di-
and mono-hydroxylated cyclopentenones bearing an aliphatic side chain
have been produced in short synthetic sequences starting from furfuryl
aldehyde. For the series of dihydroxylated trans-configured derivatives, an Achmatowicz-rearrangement and a Caddick-ring contraction were employed, and for the series of trans-configured
mono-hydroxylated derivatives a Piancatelli-rearrangement. All final
products showed good to excellent fungicidal activities against the
plant pathogens B. cinerea, S. tritici and P. infestans.
Publikation
Matern, A.; Böttcher, C.; Eschen-Lippold, L.; Westermann, B.; Smolka, U.; Döll, S.; Trempel, F.; Aryal, B.; Scheel, D.; Geisler, M.; Rosahl, S.;A substrate of the ABC transporter PEN3 stimulates bacterial flagellin (flg22)-induced callose deposition in Arabidopsis thalianaJ. Biol. Chem.2946857-6870(2019)DOI: 10.1074/jbc.RA119.007676
Nonhost resistance of Arabidopsis thaliana against Phytophthora infestans, a filamentous eukaryotic microbe and the causal agent of potato late blight, is based on a multilayered defense system. Arabidopsis thaliana controls pathogen entry through the penetration-resistance genes PEN2 and PEN3, encoding an atypical myrosinase and an ABC transporter, respectively, required for synthesis and export of unknown indole compounds. To identify pathogen-elicited leaf surface metabolites and further unravel nonhost resistance in Arabidopsis, we performed untargeted metabolite profiling by incubating a P. infestans zoospore suspension on leaves of WT or pen3 mutant Arabidopsis plants. Among the plant-secreted metabolites, 4-methoxyindol-3-yl-methanol and S-(4-methoxy-indol-3-yl-methyl) cysteine were detected in spore suspensions recollected from WT plants, but at reduced levels from the pen3 mutant plants. In both whole-cell and microsome-based assays, 4-methoxyindol-3-yl-methanol was transported in a PEN3-dependent manner, suggesting that this compound is a PEN3 substrate. The syntheses of both compounds were dependent on functional PEN2 and phytochelatin synthase 1. None of these compounds inhibited mycelial growth of P. infestans in vitro. Of note, exogenous application of 4-methoxyindol-3-yl methanol slightly elevated cytosolic Ca2+ levels and enhanced callose deposition in hydathodes of seedlings treated with a bacterial pathogen-associated molecular pattern (PAMP), flagellin (flg22). Loss of flg22-induced callose deposition in leaves of pen3 seedlings was partially reverted by the addition of 4-methoxyindol-3-yl methanol. In conclusion, we have identified a specific indole compound that is a substrate for PEN3 and contributes to the plant defense response against microbial pathogens.