Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Arndt, H.; Bachurski, M.; Yuanxiang, P.; Franke, K.; Wessjohann, L. A.; Kreutz, M. R.; Grochowska, K. M.;A screen of plant-based natural products revealed that quercetin prevents amyloid-β uptake in astrocytes as well as resulting astrogliosis and synaptic dysfunctionResearch Square(2024)DOI: 10.21203/rs.3.rs-4155455/v1
Two connected histopathological hallmarks of Alzheimer’s disease (AD) are chronic neuroinflammation and synaptic dysfunction. The accumulation of the most prevalent posttranslationally modified form of Aβ1–42, pyroglutamylated amyloid-β (Aβ3(pE)-42) in astrocytes is directly linked to glial activation and the release of proinflammatory cytokines that in turn contribute to early synaptic dysfunction in AD. At present the mechanisms of Aβ3(pE)-42 uptake to astrocytes are unknown and pharmacological interventions that interfere with this process are not available. Here we developed a simple screening assay to identify substances from a plant extract library that prevent astroglial Aβ3(pE)-42 uptake. We first show that this approach yields valid and reproducible results. Second, we show endocytosis of Aβ3(pE)-42 oligomers by astrocytes and that quercetin, a plant flavonol, is effective to specifically block astrocytic buildup of oligomeric Aβ3(pE)-42. Importantly, quercetin does not induce a general impairment of endocytosis. However, it efficiently protects against early synaptic dysfunction following exogenous Aβ3(pE)-42 application.
Publikationen in Druck
Farag, M. A.; Saied, D. B.; Afifi, S. M.; Kunzmann, A.; Wessjohann, L. A.; Westphal, H.; Kühnhold, H.; Stuhr, M.;Metabolic responses of sea anemone and jellyfish to temperature and UV bleaching: Insights into stress adaptation using LCMS-based metabolomics, molecular networking and chemometricsJ. Adv. Res.(2024)DOI: 10.1016/j.jare.2024.10.007
Introduction: Climate change poses various threats to marine life, particularly in shallow tropical waters. Objective: The impact of increased temperature and ultraviolet (UV) exposure on two photosymbiotic cnidarians, a common bubble-tip anemone and an upside-down jellyfish, was investigated. Methods: To illustrate the response of aquatic organisms, the metabolomes of unstressed Entacmaea quadricolor and Cassiopea andromeda were compared for detailed metabolite profiling. UHPLC-MS cou-pled with chemometrics and GNPS molecular networking was employed for sample classification and identification of markers unique to stress responses in each organism. Results: Several compounds with bioactive functions, including peptides and terpenoids, were reported for the first time in both organisms, viz. cyclic tetraglutamate, campestriene, and ceramide aminoethyl phosphonate (CEAP d18:2/16:0). Both anemone and jellyfish were subjected to either elevated UV-B light intensity up to 6.6 KJ m-2 or increased temperatures (28°C, 30°C, 32°C, and 34°C) over 4 days. Phospholipids, steroids, and ceramides emerged as chief markers of both types of stress, as revealed by the multivariate data analysis. Lysophosphatidylcholine (LPC 16:0), LPC (18:0/0:0), and echinoclasterol sulfate appeared as markers in both UV and thermal stress models of the anemone, whereas methyl/pro-pyl cholestane-hexa-ol were discriminatory in the UV stress model only. In the case of jellyfish, nonpolar glycosyl ceramide GlcCer (d14:1/28:6) served as a marker for UV stress, whereas polar peptides were ele-vated in the thermal stress model. Interestingly, both models of jellyfish share a phospholipid, lysophos-phatidylethanolamine (LPE 20:4), as a distinctive marker for stress, reported to be associated indirectly with the activity of innate immune response within other photosymbiotic Cnidaria such as corals and appears to be a fundamental stress response in marine organisms. Conclusion: This study presents several bioinformatic tools for the first time in two cnidarian organisms to provide not only a broader coverage of their metabolome but also broader insights into cnidarian bleaching in response to different stressors, i.e., heat and UV light, by comparing their effects in anemone versus jellyfish.
Publikationen in Druck
Arndt, H.; Bachurski, M.; Yuanxiang, P.; Franke, K.; Wessjohann, L. A.; Kreutz, M. R.; Grochowska, K. M.;A screen of plant-based natural products revealed that quercetin prevents pyroglutamylated amyloid-β (Aβ3(pE)-42) uptake in astrocytes as well as resulting astrogliosis and synaptic dysfunctionMol. Neurobiol.(2024)DOI: 10.1007/s12035-024-04509-6
Two connected histopathological hallmarks of Alzheimer’s disease (AD) are chronic neuroinflammation and synaptic dysfunction. The accumulation of the most prevalent posttranslationally modified form of Aβ1–42, pyroglutamylated amyloid-β (Aβ3(pE)-42) in astrocytes is directly linked to glial activation and the release of proinflammatory cytokines that in turn contribute to early synaptic dysfunction in AD. At present, the mechanisms of Aβ3(pE)-42 uptake to astrocytes are unknown and pharmacological interventions that interfere with this process are not available. Here we developed a simple screening assay to identify substances from a plant extract library that prevent astroglial Aβ3(pE)-42 uptake. We first show that this approach yields valid and reproducible results. Second, we show endocytosis of Aβ3(pE)-42 oligomers by astrocytes and that quercetin, a plant flavonol, is effective to specifically block astrocytic buildup of oligomeric Aβ3(pE)-42. Importantly, quercetin does not induce a general impairment of endocytosis. However, it efficiently protects against early synaptic dysfunction following exogenous Aβ3(pE)-42 application.
Publikation
Noleto‐Dias, C.; Farag, M. A.; Porzel, A.; Tavares, J. F.; Wessjohann, L. A.;A multiplex approach of MS, 1D‐, and 2D‐NMR metabolomics in plant ontogeny: A case study on Clusia minor L. organs (leaf, flower, fruit, and seed)Phytochem. Anal.35445-468(2024)DOI: 10.1002/pca.3300
Introduction: The genus Clusia L. is mostly recognised for the production of prenylated benzophenones and tocotrienol derivatives.Objectives: The objective of this study was to map metabolome variation within Clusia minor organs at different developmental stages.Material and Methods: In total 15 organs/stages (leaf, flower, fruit, and seed) were analysed by UPLC‐MS and 1H‐ and heteronuclear multiple‐bond correlation (HMBC)‐NMR‐based metabolomics.Results: This work led to the assignment of 46 metabolites, belonging to organic acids(1), sugars(2) phenolic acids(1), flavonoids(3) prenylated xanthones(1) benzophenones(4) and tocotrienols(2). Multivariate data analyses explained the variability and classification of samples, highlighting chemical markers that discriminate each organ/stage. Leaves were found to be rich in 5‐hydroxy‐8‐methyltocotrienol (8.5 μg/mg f.w.), while flowers were abundant in the polyprenylated benzophenone nemorosone with maximum level detected in the fully mature flower bud (43 μg/mg f.w.). Nemorosone and 5‐hydroxy tocotrienoloic acid were isolated from FL6 for full structural characterisation. This is the first report of the NMR assignments of 5‐hydroxy tocotrienoloic acid, and its maximum level was detected in the mature fruit at 50 μg/mg f.w. Seeds as typical storage organ were rich in sugars and omega‐6 fatty acids.Conclusion: To the best of our knowledge, this is the first report on a comparative 1D‐/2D‐NMR approach to assess compositional differences in ontogeny studies compared with LC‐MS exemplified by Clusia organs. Results derived from this study provide better understanding of the stages at which maximal production of natural compounds occur and elucidate in which developmental stages the enzymes responsible for the production of such metabolites are preferentially expressed.