Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Mass spectrometry (MS) has become the analytical method of choice in plant metabolomics. Nevertheless, metabolite annotation remains a major challenge and implies the integration of structural searches in compound libraries with biological knowledge inferred from metabolite regulation studies. Here we propose a novel integrative approach to process and exploit the rich structural information contained in in-source fragmentation patterns of high-resolution LC–MS profiles. In this approach, a correlation matrix is first calculated from individual mass features extracted by xcms processing. Mass feature co-regulation patterns corresponding to metabolite in-source fragmentation are then detected and assembled into compound spectra using the R package CAMERA and processed for in silico fragment-based structure elucidation using MetFrag. We validate the performance of this approach for the rapid annotation of the twelve largest compound spectra, including four O-acyl sugars and six 17-hydroxygeranyllinalool diterpene glycosides in metabolic profiles of insect-attacked Nicotiana attenuata leaves. Additionally, we demonstrate the power of refining MetFrag metabolite annotations based on co-regulation patterns between known and unknown compounds in the correlation matrix and proposed structural annotations on two previously un-characterized O-acyl sugars. In summary, this novel approach facilitates compound annotation from in-source fragmentation patterns using correlation between intensities of mass features of one or several metabolites. Additionally, this analysis provides further support that insect herbivory activates major metabolic reconfigurations in N. attenuata leaves.
Publikation
Kathagen, A.; Schulte, A.; Balcke, G.; Phillips, H. S.; Martens, T.; Matschke, J.; Günther, H. S.; Soriano, R.; Modrusan, Z.; Sandmann, T.; Kuhl, C.; Tissier, A.; Holz, M.; Krawinkel, L. A.; Glatzel, M.; Westphal, M.; Lamszus, K.;Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cellsActa Neuropathol.126763-780(2013)DOI: 10.1007/s00401-013-1173-y
Fluctuations in oxygen tension during tissue remodeling impose a major metabolic challenge in human tumors. Stem-like tumor cells in glioblastoma, the most common malignant brain tumor, possess extraordinary metabolic flexibility, enabling them to initiate growth even under non-permissive conditions. We identified a reciprocal metabolic switch between the pentose phosphate pathway (PPP) and glycolysis in glioblastoma stem-like (GS) cells. Expression of PPP enzymes is upregulated by acute oxygenation but downregulated by hypoxia, whereas glycolysis enzymes, particularly those of the preparatory phase, are regulated inversely. Glucose flux through the PPP is reduced under hypoxia in favor of flux through glycolysis. PPP enzyme expression is elevated in human glioblastomas compared to normal brain, especially in highly proliferative tumor regions, whereas expression of parallel preparatory phase glycolysis enzymes is reduced in glioblastomas, except for strong upregulation in severely hypoxic regions. Hypoxia stimulates GS cell migration but reduces proliferation, whereas oxygenation has opposite effects, linking the metabolic switch to the “go or grow” potential of the cells. Our findings extend Warburg’s observation that tumor cells predominantly utilize glycolysis for energy production, by suggesting that PPP activity is elevated in rapidly proliferating tumor cells but suppressed by acute severe hypoxic stress, favoring glycolysis and migration to protect cells against hypoxic cell damage.