Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Geranylgeraniol (GGOH) is an acyclic diterpene that posesses apoptotic activity to cancer cells [1]. It has been proposed to be the main intermediate of the biosynthetic pathway of plaunotol, an antipeptic ulcer drug from Croton stellatopilosus [2]. Our enzymological studies showed that GGOH is formed from the dephosphorylation of geranylgeranyl pyrophosphate (GGPP), through sequential monodephosphorylation [3], by the action of GGPP phosphatase enzyme [4]. As part of our interest in manipulating the gene of GGPP phosphatase for the production of GGOH in Escherichia coli system, we began with cloning of cDNA encoding prenyl diphosphate phosphatase from C. stellatopilosus. The degenerated primers were designed from the alignment of amino acid sequences of prenyl diphosphate phosphatase in database. The full-length gene was obtained by RACE-PCR. The cDNA contained an open reading frame encoding 888 amino acids with a calculated molecular mass of 33.6 kDa. The phosphatase motif [5] was included in the deduced amino acid sequence consisting of KX6RP, PSGH, and SRX5HX3D. Its amino acid sequence showed 71% identity to phosphatidic acid phosphatase from Vigna unguiculata. The topology prediction of the enzyme indicated that it was a transmembrane protein with 6 transmembrane regions. The recombinant prenyl diphosphate phosphatase and its 4 designed truncated genes were expressed in Escherichia coli BL21(DE3)RIL. Detection of their phosphatase activities by using [1-3H]GGPP and farnesyl pyrophosphate ([1-3H]FPP) as substrates showed that their enzymatic products of [1-3H]GGOH and [1-3H]FOH, respectively, were formed in the assay mixture. The results suggested the potential of GGOH production by the recombinant E. coli although the expression of the recombinant gene was still in low level.
Publikation
Namjooyan, F.; Azemi, M.; Mosaddegh, M.; Cheraghali, A.; Kobarfard, F.; Porzel, A.;Screening of some Solanaceae plants for cytotoxic activity, and isolation and structure elucidation of a new steroid from the active fraction of Physalis divarivata D. DonPlanta Med.73P_422(2007)DOI: 10.1055/s-2007-987202
Böttcher, C.; Roepenack-Lahaye, E. v.; Willscher, E.; Scheel, D.; Clemens, S.;Evaluation of Matrix Effects in Metabolite Profiling Based on Capillary Liquid Chromatography Electrospray Ionization Quadrupole Time-of-Flight Mass SpectrometryAnal. Chem.791507-1513(2007)DOI: 10.1021/ac061037q
The coupling of liquid chromatography to electrospray ionization quadrupole time-of-flight mass spectrometry can be a powerful tool for metabolomics, i.e., the comprehensive detection of low molecular weight compounds in biological systems. There have, however, been doubts about the feasibility and reliability of this approach, because LC−MSespecially with electrospray ionizationcan be subject to matrix effects. We evaluated matrix effects for our metabolomics platform in three ways: (i) postextraction addition of a set of reference compounds to different complex biological matrixes to determine absolute and relative matrix effects, (ii) postcolumn infusion of two reference compounds, and (iii) mixing of two complex matrixes. Our data demonstrate that there are indeed significant absolute matrix effects when comparing highly divergent samples. However, relative matrix effects are negligibleunless extremely divergent matrixes are comparedand do not compromise the relative quantification that is aimed for in nontargeted metabolomics studies. In conclusion, employing LC-coupled ESI-QTOF-MS for metabolomics studies is feasible yet rigorous validation is necessary.
Two new triterpenoids, named gouanic acid A (1) and gouanic acid B (2), were isolated from the aerial parts of Gouania ulmifolia, along with six known compounds. The structures of the new compounds were determined by spectroscopic methods, mainly NMR (1D and 2D) and mass spectrometry. The new compounds did not show significant antimicrobial activities.