Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Mittersteiner, M.; Pereira, G. S.; Silva, Y.; Wessjohann, L. A.; Bonacorso, H. G.; Martins, M. A. P.; Zanatta, N.;Substituent-driven selective N-/O-alkylation of 4-(trihalomethyl)pyrimidin-2(1H)-ones using brominated enonesJ. Org. Chem.874590-4602(2022)DOI: 10.1021/acs.joc.1c02919
The selective N- or O-alkylation of 4-(trihalomethyl)-pyrimidin-2(1H)-ones, using 5-bromo enones/enaminones as alkylating agents, is reported. It was found that the selectivity toward the N-or O-regioisomer is driven by the substituent present at the 6-position of the pyrimidine ring, thus enabling the preparation of each isomer as the sole product, in 60−95% yields. Subsequent cyclocondensation of the enaminone moiety with nitrogen dinucleophiles led to pyrimidine−azole conjugates in 55−83% yields.
Bücher und Buchkapitel
Baseggio Conrado, A.; Capuozzo, E.; Mosca, L.; Francioso, A.; Fontana, M.;Thiotaurine: From Chemical and Biological Properties to Role in H2S SignalingHu, J., et al., eds.Adv. Exp. Med. Biol.1155755-771(2019)ISBN:978-981-13-8023-5DOI: 10.1007/978-981-13-8023-5_66
In the last decade thiotaurine, 2-aminoethane thiosulfonate, has been investigated as an inflammatory modulating agent as a result of its ability to release hydrogen sulfide (H2S) known to play regulatory roles in inflammation. Thiotaurine can be included in the “taurine family” due to structural similarity to taurine and hypotaurine, and is characterized by the presence of a sulfane sulfur moiety. Thiotaurine can be produced by different pathways, such as the spontaneous transsulfuration between thiocysteine – a persulfide analogue of cysteine – and hypotaurine as well as in vivo from cystine. Moreover, the enzymatic oxidation of cysteamine to hypotaurine and thiotaurine in the presence of inorganic sulfur can occur in animal tissues and last but not least thiotaurine can be generated by the transfer of sulfur from mercaptopyruvate to hypotaurine catalyzed by a sulfurtransferase. Thiotaurine is an effective antioxidant agent as demonstrated by its ability to counteract the damage caused by pro-oxidants in the rat. Recently, we observed the influence of thiotaurine on human neutrophils functional responses. In particular, thiotaurine has been found to prevent human neutrophil spontaneous apoptosis suggesting an alternative or additional role to its antioxidant activity. It is likely that the sulfane sulfur of thiotaurine may modulate neutrophil activation via persulfidation of target proteins. In conclusion, thiotaurine can represent a biologically relevant sulfur donor acting as a biological intermediate in the transport, storage and release of sulfide.
Publikation
Wessjohann, L. A.; Morejon, M. C.; Ojeda, G. M.; Rhoden, C. R. B.; Rivera, D. G.;Applications of Convertible Isonitriles in the Ligation and Macrocyclization of Multicomponent Reaction-Derived Peptides and DepsipeptidesJ. Org. Chem.816535-6545(2016)DOI: 10.1021/acs.joc.6b01150
Peptide ligation and macrocyclization are among the most relevant approaches in the field of peptide chemistry. Whereas a variety of strategies relying on coupling reagents and native chemical ligation are available, there is a continuous need for efficient peptide ligation and cyclization methods. Herein we report on the utilization of convertible isonitriles as effective synthetic tools for the ligation and macrocyclization of peptides arising from isocyanide-based multicomponent reactions. The strategy relies on the use of convertible isonitriles—derived from Fukuyama amines—and peptide carboxylic acids in Ugi and Passerini reactions to afford N-alkylated peptides and depsipeptides, respectively, followed by conversion of the C-terminal amide onto either N-peptidoacyl indoles or pyrroles. Such activated peptides proved efficient in the ligation to peptidic, lipidic and fluorescently labeled amines and in macrocyclization protocols. As a result, a wide set of N-substituted peptides (with methyl, glycosyl and amino acids as N-substituents), cyclic N-methylated peptides and a depsipeptide were produced in good yields using conditions that involve either classical heating or microwave irradiation. This report improves the repertoire of peptide covalent modification methods by exploiting the synthetic potential of multicomponent reactions and convertible isonitriles.
Publikation
Vasco, A. V.; Pérez, C. S.; Morales, F. E.; Garay, H. E.; Vasilev, D.; Gavín, J. A.; Wessjohann, L. A.; Rivera, D. G.;Macrocyclization of Peptide Side Chains by the Ugi Reaction: Achieving Peptide Folding and Exocyclic N-Functionalization in One ShotJ. Org. Chem.806697-6707(2015)DOI: 10.1021/acs.joc.5b00858
The cyclization of peptide side chains has been traditionally used to either induce or stabilize secondary structures (β-strands, helices, reverse turns) in short peptide sequences. So far, classic peptide coupling, nucleophilic substitution, olefin metathesis, and click reactions have been the methods of choice to fold synthetic peptides by means of macrocyclization. This article describes the utilization of the Ugi reaction for the side chain-to-side chain and side chain-to-termini macrocyclization of peptides, thus enabling not only access to stable folded structures but also the incorporation of exocyclic functionalities as N-substituents. Analysis of the NMR-derived structures revealed the formation of helical turns, β-bulges, and α-turns in cyclic peptides cross-linked at i, i + 3 and i, i + 4 positions, proving the folding effect of the multicomponent Ugi macrocyclization. Molecular dynamics simulation provided further insights on the stability and molecular motion of the side chain cross-linked peptides.