Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Müllers, Y.; Sadr, A. S.; Schenderlein, M.; Pallab, N.; D. Davari, M.; Glebe, U.; Reifarth, M.;Acrylate‐derived RAFT polymers for enzyme hyperactivation – boosting the α‐chymotrypsin enzyme activity using tailor‐made poly(2‐carboxyethyl)acrylate (PCEA)ChemCatChem16e202301685(2024)DOI: 10.1002/cctc.202301685
We study the hyperactivation of α‐chymotrypsin (α‐ChT) using the acrylate polymer poly(2‐carboxyethyl) acrylate (PCEA) in comparison to the commonly used poly(acrylic acid) (PAA). The polymers are added during the enzymatic cleavage reaction of the substrate N‐glutaryl‐L‐phenylalanine p‐nitroanilide (GPNA). Enzyme activity assays reveal a pronounced enzyme hyperactivation capacity of PCEA, which reaches up to 950% activity enhancement, and is significantly superior to PAA (revealing an activity enhancement of approx. 450%). In a combined experimental and computational study, we investigate α‐ChT/polymer interactions to elucidate the hyperactivation mechanism of the enzyme. Isothermal titration calorimetry reveals a pronounced complexation between the polymer and the enzyme. Docking simulations reveal that binding of polymers significantly improves the binding affinity of GPNA to α‐ChT. Notably, a higher binding affinity is found for the α‐ChT/PCEA compared to the α‐ChT/PAA complex. Further molecular dynamics (MD) simulations reveal changes in the size of the active site in the enzyme/polymer complexes, with PCEA inducing a more pronounced alteration compared to PAA, facilitating an easier access for the substrate to the active site of α‐ChT.
Publikation
Schuster, M.; Eisele, S.; Armas-Egas, L.; Kessenbrock, T.; Kourelis, J.; Kaiser, M.; Hoorn, R. A.;Enhanced late blight resistance by engineering an EpiC2B‐insensitive immune proteasePlant Biotechnol. J.22284-286(2024)DOI: 10.1111/pbi.14209
Transient expression in Nicotiana benthamiana offers a robust platform for the rapid production of complex secondary metabolites. It has proven highly effective in helping identify genes associated with pathways responsible for synthesizing various valuable natural compounds. While this approach has seen considerable success, it has yet to be applied to uncovering genes involved in anthocyanin biosynthetic pathways. This is because only a single anthocyanin, delphinidin 3‐O‐rutinoside, can be produced in N. benthamiana by activation of anthocyanin biosynthesis using transcription factors. The production of other anthocyanins would necessitate the suppression of certain endogenous flavonoid biosynthesis genes while transiently expressing others. In this work, we present a series of tools for the reconstitution of anthocyanin biosynthetic pathways in N. benthamiana leaves. These tools include constructs for the expression or silencing of anthocyanin biosynthetic genes and a mutant N. benthamiana line generated using CRISPR. By infiltration of defined sets of constructs, the basic anthocyanins pelargonidin 3‐O‐glucoside, cyanidin 3‐O‐glucoside and delphinidin 3‐O‐glucoside could be obtained in high amounts in a few days. Additionally, co‐infiltration of supplementary pathway genes enabled the synthesis of more complex anthocyanins. These tools should be useful to identify genes involved in the biosynthesis of complex anthocyanins. They also make it possible to produce novel anthocyanins not found in nature. As an example, we reconstituted the pathway for biosynthesis of Arabidopsis anthocyanin A5, a cyanidin derivative and achieved the biosynthesis of the pelargonidin and delphinidin variants of A5, pelargonidin A5 and delphinidin A5.
Publikation
Schindele, P.; Merker, L.; Schreiber, T.; Prange, A.; Tissier, A.; Puchta, H.;Enhancing gene editing and gene targeting efficiencies in
Arabidopsis thaliana
by using an intron‐containing version of
ttLbCas12a
Plant Biotechnol. J.21457-459(2023)DOI: 10.1111/pbi.13964