Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Sallaud, C.; Giacalone, C.; Töpfer, R.; Goepfert, S.; Bakaher, N.; Rösti, S.; Tissier, A.;Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomesPlant J.721-17(2012)DOI: 10.1111/j.1365-313X.2012.05068.x
Leaves of tobacco (Nicotiana tabacum) are covered with glandular trichomes that produce sucrose esters and diterpenoids in varying quantities, depending on cultivar type. The bicyclic diterpene Z‐abienol is the major labdanoid present in some oriental tobacco cultivars, where it constitutes a precursor of important flavours and aromas. We describe here the identification and characterization of two genes governing the biosynthesis of Z‐abienol in N. tabacum. As for other angiosperm labdanoid diterpenes, the biosynthesis of Z‐abienol proceeds in two steps. NtCPS2 encodes a class‐II terpene synthase that synthesizes 8‐hydroxy‐copalyl diphosphate, and NtABS encodes a kaurene synthase‐like (KSL) protein that uses 8‐hydroxy‐copalyl diphosphate to produce Z‐abienol. Phylogenetic analysis indicates that NtABS belongs to a distinct clade of KSL proteins that comprises the recently identified tomato (Solanum habrochaites) santalene and bergamotene synthase. RT‐PCR results show that both genes are preferentially expressed in trichomes. Moreover, microscopy of NtCPS2 promoter‐GUS fusion transgenics demonstrated a high specificity of expression to trichome glandular cells. Ectopic expression of both genes, but not of either one alone, driven by a trichome‐specific promoter in transgenic Nicotiana sylvestris conferred Z‐abienol formation to this species, which does not normally produce it. Furthermore, sequence analysis of over 100 tobacco cultivars revealed polymorphisms in NtCPS2 that lead to a prematurely truncated protein in cultivars lacking Z‐abienol, thus establishing NtCPS2 as a major gene controlling Z‐abienol biosynthesis in tobacco. These results offer new perspectives for tobacco breeding and the metabolic engineering of labdanoid diterpenes, as well as for structure–function relationship studies of terpene synthases.
Publikation
Parthier, C.; Görlich, S.; Jaenecke, F.; Breithaupt, C.; Bräuer, U.; Fandrich, U.; Clausnitzer, D.; Wehmeier, U. F.; Böttcher, C.; Scheel, D.; Stubbs, M. T.;The O-Carbamoyltransferase TobZ Catalyzes an Ancient Enzymatic ReactionAngew. Chem. Int. Ed.514046-4052(2012)DOI: 10.1002/anie.201108896
An ancient reaction vessel: TobZ carbamoylates the antibiotic tobramycin to form nebramycin 5′. The YrdC‐like domain (blue) catalyzes the formation of the novel intermediate carbamoyladenylate, which is channeled through a common “reaction chamber” to the Kae1‐like domain (brown), site of carbamoyl transfer.
Publikation
Brandt, R.; Salla-Martret, M.; Bou-Torrent, J.; Musielak, T.; Stahl, M.; Lanz, C.; Ott, F.; Schmid, M.; Greb, T.; Schwarz, M.; Choi, S.-B.; Barton, M. K.; Reinhart, B. J.; Liu, T.; Quint, M.; Palauqui, J.-C.; Martínez-García, J. F.; Wenkel, S.;Genome-wide binding-site analysis of REVOLUTA reveals a link between leaf patterning and light-mediated growth responsesPlant J.7231-42(2012)DOI: 10.1111/j.1365-313X.2012.05049.x
Unlike the situation in animals, the final morphology of the plant body is highly modulated by the environment. During Arabidopsis development, intrinsic factors provide the framework for basic patterning processes. CLASS III HOMEODOMAIN LEUCINE ZIPPER (HD‐ZIPIII) transcription factors are involved in embryo, shoot and root patterning. During vegetative growth HD‐ZIPIII proteins control several polarity set‐up processes such as in leaves and the vascular system. We have identified several direct target genes of the HD‐ZIPIII transcription factor REVOLUTA (REV) using a chromatin immunoprecipitation/DNA sequencing (ChIP‐Seq) approach. This analysis revealed that REV acts upstream of auxin biosynthesis and affects directly the expression of several class II HD‐ZIP transcription factors that have been shown to act in the shade‐avoidance response pathway. We show that, as well as involvement in basic patterning, HD‐ZIPIII transcription factors have a critical role in the control of the elongation growth that is induced when plants experience shade. Leaf polarity is established by the opposed actions of HD‐ZIPIII and KANADI transcription factors. Finally, our study reveals that the module that consists of HD‐ZIPIII/KANADI transcription factors controls shade growth antagonistically and that this antagonism is manifested in the opposed regulation of shared target genes.
Publikation
van Berkel, S. S.; Brauch, S.; Gabriel, L.; Henze, M.; Stark, S.; Vasilev, D.; Wessjohann, L. A.; Abbas, M.; Westermann, B.;Traceless Tosylhydrazone-Based Triazole Formation: A Metal-Free Alternative to Strain-Promoted Azide-Alkyne CycloadditionAngew. Chem. Int. Ed.515343-5346(2012)DOI: 10.1002/anie.201108850
Triple‐T trick! Traceless tosylhydrazone‐based triazole formation is readily achieved by reacting primary amines with functional α,α‐dichlorotosylhydrozones under ambient conditions. This fast and efficient alternative affords exclusively 1,4‐substituted triazole “click products” with complete retention of configuration. Primary amines, inherent to many natural products, can be modified in this way without protecting group manipulations.