Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Rahn, J.; Lennicke, C.; Kipp, A. P.; Müller, A. S.; Wessjohann, L. A.; Lichtenfels, R.; Seliger, B.;Altered protein expression pattern in colon tissue of mice upon supplementation with distinct selenium compoundsProteomics171600486(2017)DOI: 10.1002/pmic.201600486
The essential trace element selenium (Se) is controversially discussed concerning its role in health and disease. Its various physiological functions are largely mediated by Se incorporation in the catalytic center of selenoproteins. In order to gain insights into the impact of Se deficiency and of supplementation with different Se compounds (selenite, selenate, selenomethionine) at defined concentrations (recommended, 150 μg/kg diet; excessive, 750 μg/kg diet) in murine colon tissues, a 20‐week feeding experiment was performed followed by analysis of the protein expression pattern of colon tissue specimens by 2D‐DIGE and MALDI‐TOF MS. Using this approach, 24 protein spots were identified to be significantly regulated by the different Se compounds. These included the antioxidant enzyme peroxiredoxin‐5 (PRDX5), proteins with binding capabilities, such as cofilin‐1 (COF1), calmodulin, and annexin A2 (ANXA2), and proteins involved in catalytic processes, such as 6‐phosphogluconate dehydrogenase (6PGD). Furthermore, the Se compounds demonstrated a differential impact on the expression of the identified proteins. Selected target structures were validated by qPCR and Western blot which mainly confirmed the proteomic profiling data. Thus, novel Se‐regulated proteins in colon tissues have been identified, which expand our understanding of the physiologic role of Se in colon tissue.
Publikation
Wessjohann, L. A.; Kreye, O.; Rivera, D. G.;One-Pot Assembly of Amino Acid Bridged Hybrid Macromulticyclic Cages through Multiple Multicomponent MacrocyclizationsAngew. Chem. Int. Ed.563501-3505(2017)DOI: 10.1002/anie.201610801
An important development in the field of macrocyclization strategies towards molecular cages is described. The approach comprises the utilization of a double Ugi four‐component macrocyclization for the assembly of macromulticycles with up to four different tethers, that is, hybrid cages. The innovation of this method rests on setting up the macromulticycle connectivities not through the tethers but through the bridgeheads, which in this case involve N‐substituted amino acids. Both dilution and metal‐template‐driven macrocyclization conditions were implemented with success, enabling the one‐pot formation of cryptands and cages including steroidal, polyether, heterocyclic, peptidic, and aryl tethers. This method demonstrates substantial complexity‐generating character and is suitable for applications in molecular recognition and catalysis.