Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Eldehna, W. M.; Fares, M.; Bonardi, A.; Avgenikos, M.; Baselious, F.; Schmidt, M.; Al-Warhi, T.; Abdel-Aziz, H. A.; Rennert, R.; Peat, T. S.; Supuran, C. T.; Wessjohann, L. A.; Ibrahim, H. S.;4-(Pyrazolyl)benzenesulfonamide Ureas as Carbonic Anhydrases Inhibitors and Hypoxia-Mediated Chemo-Sensitizing Agents in Colorectal Cancer CellsJ. Med. Chem.6720438-20454(2024)DOI: 10.1021/acs.jmedchem.4c01894
Hypoxia in tumors contributes to chemotherapy resistance, worsened by acidosis driven by carbonic anhydrases (hCA IX and XII). Targeting these enzymes can mitigate acidosis, thus enhancing tumor sensitivity to cytotoxic drugs. Herein, novel 4-(pyrazolyl)benzenesulfonamide ureas (SH7a−t) were developed and evaluated for their inhibitory activity against hCA IX and XII. They showed promising results (hCA IX: KI =15.9−67.6 nM, hCA XII: KI = 16.7−65.7 nM). Particularly, SH7s demonstrated outstanding activity (KIs = 15.9 nM for hCA IX and 55.2 nM for hCA XII) and minimal off-target kinase inhibition over a panel of 258 kinases. In NCI anticancer screening, SH7s exhibited broad-spectrum activity with an effective growth inhibition full panel GI50 (MG-MID) value of 3.5 μM and a subpanel GI50 (MG-MID) range of 2.4−6.3 μM. Furthermore, SH7s enhanced the efficacy of Taxol and 5-fluorouracil in cotreatment regimens under hypoxic conditions in HCT-116 colorectal cancer cells, indicating its potential as a promising anticancer agent.
Publikation
Méndez, Y.; Vasco, A. V.; Ebensen, T.; Schulze, K.; Yousefi, M.; Davari, M. D.; Wessjohann, L. A.; Guzmán, C. A.; Rivera, D. G.; Westermann, B.;Diversification of a novel α‐galactosyl ceramide hotspot boosts the adjuvant properties in parenteral and mucosal vaccinesAngew. Chem. Int. Ed.63e202310983(2024)DOI: 10.1002/anie.202310983
The development of potent adjuvants is an important step for improving the performance of subunit vaccines. CD1d agonists, such as the prototypical α‐galactosyl ceramide (α‐GalCer), are of special interest due to their ability to activate iNKT cells and trigger rapid dendritic cell maturation and B‐cell activation. Herein, we introduce a novel derivatization hotspot at the α‐GalCer skeleton, namely the N‐substituent at the amide bond. The multicomponent diversification of this previously unexplored glycolipid chemotype space permitted the introduction of a variety of extra functionalities that can either potentiate the adjuvant properties or serve as handles for further conjugation to antigens toward the development of self‐adjuvanting vaccines. This strategy led to the discovery of compounds eliciting enhanced antigen‐specific T cell stimulation and a higher antibody response when delivered by either the parenteral or the mucosal route, as compared to a known potent CD1d agonist. Notably, various functionalized α‐GalCer analogues showed a more potent adjuvant effect after intranasal immunization than a PEGylated α‐GalCer analogue previously optimized for this purpose. Ultimately, this work could open multiple avenues of opportunity for the use of mucosal vaccines against microbial infections.
Publikation
Ravindran, B. M.; Rizzo, P.; Franke, K.; Fuchs, J.; D’Auria, J.;Simple and robust multiple shoot regeneration and root induction cycle from different explants of Hypericum perforatum L. genotypesPlant Cell Tiss. Organ Cult.1521-15(2023)DOI: 10.1007/s11240-022-02370-w
Hypericum perforatum L. commonly known as Saint John’s Wort (SJW) is an economically important medicinal plant known for accumulating its valuable bioactive compounds in a compartmentalized fashion. The dark glands are very rich in hypericin, and translucent glands are filled with hyperforin. The antibiotic properties of the afore mentioned bioactive compounds make it hard to establish tissue regeneration protocols essential to put in place a transformation platform that is required for testing gene function in this challenging species. In this study, we report the establishment of a regeneration and root induction cycle from different types of explants. The regeneration cycle was set up for the continuous supply of roots and leaf explants for downstream transformation experiments. The most effective medium to obtain multiple shoot-buds from node cultures was MS (Murashige and Skoog, Physiol Plant 15:473–497, 1962) medium supplemented with 0.5 mg L−1 6-Benzylaminopurine (BAP) and 0.5 mg L−1 indole-3-butyric acid (IBA). The same combination yielded copious amounts of shoots from root and leaf explants as well. For rooting the elongated shoots, MS medium devoid of plant growth regulators (PGRs) was sufficient. Nevertheless, addition of a low amount of IBA improved the quantity and quality of roots induced. Additionally, the roots obtained on a medium containing IBA readily developed shoot buds.
Publikation
Ravindran, B. M.; Rizzo, P.; Franke, K.; Fuchs, J.; D’Auria, J.;Correction to: Simple and robust multiple shoot regeneration and root induction cycle from different explants of Hypericum perforatum L. genotypesPlant Cell Tiss. Organ Cult.15217(2023)DOI: 10.1007/s11240-022-02382-6