Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Méndez, Y.; Vasco, A. V.; Ebensen, T.; Schulze, K.; Yousefi, M.; Davari, M. D.; Wessjohann, L. A.; Guzmán, C. A.; Rivera, D. G.; Westermann, B.;Diversification of a novel α‐galactosyl ceramide hotspot boosts the adjuvant properties in parenteral and mucosal vaccinesAngew. Chem. Int. Ed.63e202310983(2024)DOI: 10.1002/anie.202310983
The development of potent adjuvants is an important step for improving the performance of subunit vaccines. CD1d agonists, such as the prototypical α‐galactosyl ceramide (α‐GalCer), are of special interest due to their ability to activate iNKT cells and trigger rapid dendritic cell maturation and B‐cell activation. Herein, we introduce a novel derivatization hotspot at the α‐GalCer skeleton, namely the N‐substituent at the amide bond. The multicomponent diversification of this previously unexplored glycolipid chemotype space permitted the introduction of a variety of extra functionalities that can either potentiate the adjuvant properties or serve as handles for further conjugation to antigens toward the development of self‐adjuvanting vaccines. This strategy led to the discovery of compounds eliciting enhanced antigen‐specific T cell stimulation and a higher antibody response when delivered by either the parenteral or the mucosal route, as compared to a known potent CD1d agonist. Notably, various functionalized α‐GalCer analogues showed a more potent adjuvant effect after intranasal immunization than a PEGylated α‐GalCer analogue previously optimized for this purpose. Ultimately, this work could open multiple avenues of opportunity for the use of mucosal vaccines against microbial infections.
Publikation
Klein, J.; Lam, H.; Mak, T. D.; Bittremieux, W.; Perez-Riverol, Y.; Gabriels, R.; Shofstahl, J.; Hecht, H.; Binz, P.-A.; Kawano, S.; Van Den Bossche, T.; Carver, J.; Neely, B. A.; Mendoza, L.; Suomi, T.; Claeys, T.; Payne, T.; Schulte, D.; Sun, Z.; Hoffmann, N.; Zhu, Y.; Neumann, S.; Jones, A. R.; Bandeira, N.; Vizcaíno, J. A.; Deutsch, E. W.;The Proteomics Standards Initiative Standardized Formats for Spectral Libraries and Fragment Ion Peak Annotations: mzSpecLib and mzPAFAnal. Chem.9618491-18501(2024)DOI: 10.1021/acs.analchem.4c04091
Mass spectral libraries are collections of reference spectra, usually associated with specific analytes from which the spectra were generated, that are used for further downstream analysis of new spectra. There are many different formats used for encoding spectral libraries, but none have undergone a standardization process to ensure broad applicability to many applications. As part of the Human Proteome Organization Proteomics Standards Initiative (PSI), we have developed a standardized format for encoding spectral libraries, called mzSpecLib (https://psidev.info/mzSpecLib). It is primarily a data model that flexibly encodes metadata about the library entries using the extensible PSI-MS controlled vocabulary and can be encoded in and converted between different serialization formats. We have also developed a standardized data model and serialization for fragment ion peak annotations, called mzPAF (https://psidev.info/mzPAF). It is defined as a separate standard, since it may be used for other applications besides spectral libraries. The mzSpecLib and mzPAF standards are compatible with existing PSI standards such as ProForma 2.0 and the Universal Spectrum Identifier. The mzSpecLib and mzPAF standards have been primarily defined for peptides in proteomics applications with basic small molecule support. They could be extended in the future to other fields that need to encode spectral libraries for nonpeptidic analytes.
Publikation
Smolková, R.; Smolko, L.; Samoľová, E.; Morgan, I.; Rennert, R.; Kaluđerović, G. N.;Novel Zn(ii), Co(ii) and Cu(ii) diflunisalato complexes with neocuproine and their exceptional antiproliferative activity against cancer cell linesDalton Trans.5317595-17607(2024)DOI: 10.1039/d4dt01736f
Three novel complexes of deprotonated diflunisal (dif) with neocuproine (neo) were synthesized and characterized via elemental, spectral (UV-vis, FTIR, fluorescence, and mass spectrometry), and single-crystal X-ray diffraction analyses. Although the compounds shared a similar composition of [MCl(dif)(neo)], where M represents Zn(II) (1), Co(II) (2) and Cu(II) (3), only 1 and 2 were isostructural, while 3 differed in both the molecular and supramolecular structures. In all three complex molecules, the central atom is coordinated by two nitrogen atoms of neo in a bidentate chelate mode, and one chlorido ligand and dif is bonded in either a monodentate mode via one oxygen atom of the carboxylate in 1 and 2 or in a bidentate chelate mode via both carboxylate oxygen atoms in 3. All three compounds demonstrated remarkable antiproliferative activity against human prostate (PC-3), colon (HCT116) and breast (MDA-MB-468) cancer cell lines with IC50 values in the nanomolar range, with the lowest values observed in the case of PC-3 and MDA-MB-468 with 2 (20.0 nM) and 3 (31.1 nM), respectively. Moreover, complex 2, as the most active, was further investigated for its potential to induce perturbations in the cell cycle of PC-3 cells. The results indicated an induction of caspase-independent apoptosis. The interaction of the complexes with genomic DNA isolated from the respective cancer cell lines was evaluated for the intercalative mode, with binding strength correlated with the antiproliferative activity against PC-3 and MDA-MB-468 cancer cell lines.
Publikation
Püllmann, P.; Homann, D.; Karl, T. A.; König, B.; Weissenborn, M. J.;Light‐controlled biocatalysis by unspecific peroxygenases with genetically encoded photosensitizersAngew. Chem. Int. Ed.62e202307897(2023)DOI: 10.1002/anie.202307897
Fungal unspecific peroxygenases (UPOs) have gained substantial attention for their versatile oxyfunctionalization chemistry paired with impressive catalytic capabilities. A major drawback, however, remains their sensitivity towards their co‐substrate hydrogen peroxide, necessitating the use of smart in situ hydrogen peroxide generation methods to enable efficient catalysis setups. Herein, we introduce flavin‐containing protein photosensitizers as a new general tool for light‐controlled in situ hydrogen peroxide production. By genetically fusing flavin binding fluorescent proteins and UPOs, we have created two virtually self‐sufficient photo‐enzymes (PhotUPO). Subsequent testing of a versatile substrate panel with the two divergent PhotUPOs revealed two stereoselective conversions. The catalytic performance of the fusion protein was optimized through enzyme and substrate loading variation, enabling up to 24300 turnover numbers (TONs) for the sulfoxidation of methyl phenyl sulfide. The PhotUPO concept was upscaled to a 100 mg substrate preparative scale, enabling the extraction of enantiomerically pure alcohol products.Graphical Abstract
Unspecific peroxygenases (UPOs) have recently gained
attraction as versatile oxyfunctionalization catalysts. One shortcoming,
however, is their susceptibility towards the co-substrate hydrogen
peroxide. As a solution, the concept of light-dependent UPO biocatalysis
with genetically encoded flavin-containing photosensitizer proteins for
in situ hydrogen peroxide production is introduced.