Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Hashemi Haeri, H.; Schneegans, N.; Eisenschmidt-Bönn, D.; Brandt, W.; Wittstock, U.; Hinderberger, D.;Characterization of the active site in the thiocyanate-forming protein from Thlaspi arvense (TaTFP) using EPR spectroscopyBiol. Chem.405105-118(2024)DOI: 10.1515/hsz-2023-0187
Glucosinolates are plant thioglucosides, which act as chemical defenses. Upon tissue damage, their myrosinase-catalyzed hydrolysis yields aglucones that rearrange to toxic isothiocyanates. Specifier proteins such as thiocyanate-forming protein from Thlaspi arvense (TaTFP) are non-heme iron proteins, which capture the aglucone to form alternative products, e.g. nitriles or thiocyanates. To resolve the electronic state of the bound iron cofactor in TaTFP, we applied continuous wave electron paramagnetic resonance (CW EPR) spectroscopy at X-and Q-band frequencies (∼9.4 and ∼34 GHz). We found characteristic features of high spin and low spin states of a d5 electronic configuration and local rhombic symmetry during catalysis. We monitored the oxidation states of bound iron during conversion of allylglucosinolate by myrosinase and TaTFP in presence and absence of supplemented Fe2+. Without added Fe2+, most high spin features of bound Fe3+ were preserved, while different g’-values of the low spin part indicated slight rearrangements in the coordination sphere and/or structural geometry. We also examined involvement of the redox pair Fe3+/Fe2 in samples with supplemented Fe2+. The absence of any EPR signal related to Fe3+ or Fe2+ using an iron-binding deficient TaTFP variant allowed us to conclude that recorded EPR signals originated from the bound iron cofactor.
Publikation
Paponov, M.; Ziegler, J.; Paponov, I. A.;Light exposure of roots in aeroponics enhances the accumulation of phytochemicals in aboveground parts of the medicinal plants Artemisia annua and Hypericum perforatumFront. Plant Sci.141079656(2023)DOI: 10.3389/fpls.2023.1079656
Light acts as a trigger to enhance the accumulation of secondary compounds in the aboveground part of plants; however, whether a similar triggering effect occurs in roots is unclear. Using an aeroponic setup, we investigated the effect of long-term exposure of roots to LED lighting of different wavelengths on the growth and phytochemical composition of two high-value medicinal plants, Artemisia annua and Hypericum perforatum. In A. annua, root exposure to white, blue, and red light enhanced the accumulation of artemisinin in the shoots by 2.3-, 2.5-, and 1.9-fold, respectively. In H. perforatum, root exposure to white, blue, red, and green light enhanced the accumulation of coumaroylquinic acid in leaves by 89, 65, 84, and 74%, respectively. Root lighting also increased flavonol concentrations. In contrast to its effects in the shoots, root illumination did not change phytochemical composition in the roots or root exudates. Thus, root illumination induces a systemic response, resulting in modulation of the phytochemical composition in distal tissues remote from the light exposure site.
Publikation
Paponov, M.; Flate, J.; Ziegler, J.; Lillo, C.; Paponov, I. A.;Heterogeneous nutrient supply modulates root exudation and accumulation of medicinally valuable compounds in Artemisia annua and Hypericum perforatumFront. Plant Sci.141174151(2023)DOI: 10.3389/fpls.2023.1174151
Plants have evolved complex mechanisms to adapt to nutrient-deficient environments, including stimulating lateral root proliferation into local soil patches with high nutrient content in response to heterogeneous nutrient distribution. Despite the widespread occurrence of this phenomenon in soil, the effect of heterogeneous nutrient distribution on the accumulation of secondary compounds in plant biomass and their exudation by roots remains largely unknown. This study aims to fill this critical knowledge gap by investigating how deficiency and unequal distributions of nitrogen (N), phosphorus (P), and iron (Fe) affect plant growth and accumulation of the antimalarial drug artemisinin (AN) in leaves and roots of Artemisia annua, as well as AN exudation by roots. Heterogeneous N and P supplies strongly increased root exudation of AN in half of a split-root system exposed to nutrient deficiency. By contrast, exposure to a homogeneous nitrate and phosphate deficiency did not modulate root exudation of AN. This indicates that a combination of local and systemic signals, reflecting low and high nutritional statuses, respectively, were required to enhance AN exudation. This exudation response was independent of the regulation of root hair formation, which was predominantly modulated by the local signal. In contrast to the heterogeneous supply of N and P, heterogeneous Fe supply did not modulate AN root exudation but increased AN accumulation in locally Fe-deficient roots. No modulation of nutrient supply significantly changed the accumulation of AN in A. annua leaves. The impact of a heterogeneous nitrate supply on growth and phytochemical composition was also investigated in Hypericum perforatum plants. Unlike in A. annue, the uneven N supply did not significantly influence the exudation of secondary compounds in the roots of H. perforatum. However, it did enhance the accumulation of several biologically active compounds, such as hypericin, catechin, and rutin isomers, in the leaves of H. perforatum. We propose that the capacity of plants to induce the accumulation and/or differential exudation of secondary compounds under heterogeneous nutrient supply is both species- and compound-specific. The ability to differentially exude AN may contribute to A. annua’s adaptation to nutrient disturbances and modulate allelopathic and symbiotic interactions in the rhizosphere.
Publikation
Heuermann, D.; Döll, S.; Schweneker, D.; Feuerstein, U.; Gentsch, N.; von Wirén, N.;Distinct metabolite classes in root exudates are indicative for field- or hydroponically-grown cover cropsFront. Plant Sci.141122285(2023)DOI: 10.3389/fpls.2023.1122285
Introduction: Plants release a large variety of metabolites via their roots to shape physico-chemical soil properties and biological processes in the rhizosphere. While hydroponic growth conditions facilitate accessibility of the root system and recovery of root exudates, the natural soil environment can alter root metabolism and exudate secretion, raising the question to what extent the quantity and composition of root exudates released in hydroponic growth systems reflect those recovered from soil-grown roots.
Methods: Using a root washing method, we sampled root exudates from four field-grown cover crop species with wide taxonomic distance, namely white mustard, lacy phacelia, bristle oat, and Egyptian clover. A set of primary metabolites and secondary metabolites were analysed in a targeted and untargeted LC-MS-based approach, respectively, for comparison with exudates obtained from hydroponically cultured plants.
Results and discussion: We found that hydroponically cultivated plants released a larger amount of total carbon, but that the recovery of total carbon was not indicative for the diversity of metabolites in root exudates. In the field, root exudates from phacelia and clover contained 2.4 to 3.8 times more secondary metabolites, whereas carbon exudation in hydroponics was 5- to 4-fold higher. The composition of the set of metabolites identified using the untargeted approach was much more distinct among all species and growth conditions than that of quantified primary metabolites. Among secondary metabolite classes, the presence of lipids and lipid-like molecules was highly indicative for field samples, while the release of a large amount of phenylpropanoids, organoheterocyclic compounds or benzenoids was characteristic for clover, mustard or oat, respectively, irrespective of the cultivation condition. However, at the compound level the bulk of released metabolites was specific for cultivation conditions in every species, which implies that hydroponically sampled root exudates poorly reflect the metabolic complexity of root exudates recovered from field-grown plants.