Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
BackgroundImplanted osmotic minipumps are commonly used for long-term, brain-targeted delivery of a wide range of experimental agents by being connected to a catheter and a cannula. During the stereotactical surgery procedure, the cannula has to be placed correctly in the x-y directions and also with respect to the injection point in the z-direction (deepness). However, the flat fixation base of available cannula holders doesn’t allow an easy, secure fixation onto the curve-shaped skull.New methodWe have developed a modified method for a better fixation of the cannula holder by using an easy-to-produce, skull-shaped silicone spacer as fixation adapter.ResultsWe describe the application and its fast and reliable production in the lab.Comparison with existing method(s)Superglue or cement is currently being used as the method of choice. However, the curve-shaped skull surface does not fit well with the flat and rigid cannula adapter which leads to fixation problems over time causing wide infusion channels and often also to leakage problems from intracerebrally applied agents towards the surface meninges. As another consequence of the inappropriate fixation, the cannula may loosen from the skull before the end of the experiment or it causes damage to the brain tissue, harming the animals with leading to a failure of the whole experiment.ConclusionsThe easy-to-produce spacer facilitates the crucial step of long-term, stereotactic brain infusion experiments with intracerebral catheters in a highly secure and reproducible way.
Publikation
López-Carrasco, A.; Ballesteros, C.; Sentandreu, V.; Delgado, S.; Gago-Zachert, S.; Flores, R.; Sanjuán, R.;Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencingPLOS Pathog.13e1006547(2017)DOI: 10.1371/journal.ppat.1006547
Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplast-replicating viroid. However, whether this is a general feature of viroids remains unclear. Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a common host (eggplant) of two viroids, each representative of one family: the chloroplastic eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear potato spindle tuber viroid (PSTVd, Pospiviroidae). This revealed higher mutation frequencies in ELVd than in PSTVd, as well as marked differences in the types of mutations produced. Rates of spontaneous mutation, quantified in vivo using the lethal mutation method, ranged from 1/1000 to 1/800 for ELVd and from 1/7000 to 1/3800 for PSTVd depending on sequencing run. These results suggest that extremely high mutability is a common feature of chloroplastic viroids, whereas the mutation rates of PSTVd and potentially other nuclear viroids appear significantly lower and closer to those of some RNA viruses.