Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Edeler, D.; Bensing, C.; Schmidt, H.; Kaluđerović, G. N.;Preparation and in vitro investigations of triphenyl[ω-(tetrahydro-2H-pyran-2-yloxy)alkyl]tin(IV) compoundsAppl. Organomet. Chem.31e3630(2017)DOI: 10.1002/aoc.3630
The reaction of SnPh3Li with X(CH2)nO–THP (THP = tetrahydro‐2H‐pyran‐2‐yl; n = 3, 4, 6, 8, 11; X = Cl, Br) afforded organotin(IV) compounds with the general formula Ph3Sn(CH2)nO–THP (1–5). The tetraorganotin(IV) compounds were characterized using multinuclear NMR and infrared spectroscopies and high‐resolution mass spectrometry. Anticancer activity of the synthesized compounds was tested in vitro against the A2780 (ovarian), A549 (lung), HeLa (adenocarcinoma) and SW480 (colon) tumour cell lines with SRB assay. The in vitro investigations revealed that when a shorter chain was present a higher activity was achieved; however compounds 1–5 were found to be less active than cisplatin. In addition, the most active compound, 1, enters A2780 cells and causes apoptosis by triggering both intrinsic and extrinsic caspase pathways.
Publikation
Tissier, A.; Morgan, J. A.; Dudareva, N.;Plant Volatiles: Going ‘In’ but not ‘Out’ of Trichome CavitiesTrends Plant Sci.22930-938(2017)DOI: 10.1016/j.tplants.2017.09.001
Plant glandular trichomes are able to secrete and store large amounts of volatile organic compounds (VOCs). VOCs typically accumulate in dedicated extracellular spaces, which can be either subcuticular, as in the Lamiaceae or Asteraceae, or intercellular, as in the Solanaceae. Volatiles are retained at high concentrations in these storage cavities with limited release into the atmosphere and without re-entering the secretory cells, where they would be toxic. This implies the existence of mechanisms allowing transport of VOCs to the cavity but preventing their diffusion out once they have been delivered. The cuticle and cell wall lining the cavity are likely to have key roles in retaining volatiles, but their exact composition and the potential molecular players involved are largely unknown.