Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Farag, M. A.; Fekry, M. I.; Al-Hammady, M. A.; Khalil, M. N.; El-Seedi, H. R.; Meyer, A.; Porzel, A.; Westphal, H.; Wessjohann, L. A.;Cytotoxic Effects of Sarcophyton sp. Soft Corals—Is There a Correlation to Their NMR Fingerprints?Mar. Drugs15211(2017)DOI: 10.3390/md15070211
Sarcophyton sp. soft corals are rich in cembranoid diterpenes, which represent the main chemical defense of corals against their natural predators in addition to their myriad biological effects in humans. Quantitative NMR (qNMR) was applied for assessing the diterpene variation in 16 soft coral specimens in the context of their genotype, origin, and growing habitat. qNMR revealed high diterpene levels in Sarcophyton sp. compared to Sinularia and Lobophyton, with (ent)sarcophines as major components (17–100 µg/mg) of the coral tissues. Multivariate data analysis was employed to classify samples based on the quantified level of diterpenes, and compared to the untargeted NMR approach. Results revealed that qNMR provided a stronger classification model of Sarcophyton sp. than untargeted NMR fingerprinting. Additionally, cytotoxicity of soft coral crude extracts was assessed against androgen-dependent prostate cancer cell lines (PC3) and androgen-independent colon cancer cell lines (HT-29), with IC50 values ranging from 10–60 µg/mL. No obvious correlation between the extracts’ IC50 values and their diterpene levels was found using either Spearman or Pearson correlations. This suggests that this type of bioactivity may not be easily predicted by NMR metabolomics in soft corals, or is not strongly correlated to measured diterpene levels.
Publikation
Edeler, D.; Bensing, C.; Schmidt, H.; Kaluđerović, G. N.;Preparation and in vitro investigations of triphenyl[ω-(tetrahydro-2H-pyran-2-yloxy)alkyl]tin(IV) compoundsAppl. Organomet. Chem.31e3630(2017)DOI: 10.1002/aoc.3630
The reaction of SnPh3Li with X(CH2)nO–THP (THP = tetrahydro‐2H‐pyran‐2‐yl; n = 3, 4, 6, 8, 11; X = Cl, Br) afforded organotin(IV) compounds with the general formula Ph3Sn(CH2)nO–THP (1–5). The tetraorganotin(IV) compounds were characterized using multinuclear NMR and infrared spectroscopies and high‐resolution mass spectrometry. Anticancer activity of the synthesized compounds was tested in vitro against the A2780 (ovarian), A549 (lung), HeLa (adenocarcinoma) and SW480 (colon) tumour cell lines with SRB assay. The in vitro investigations revealed that when a shorter chain was present a higher activity was achieved; however compounds 1–5 were found to be less active than cisplatin. In addition, the most active compound, 1, enters A2780 cells and causes apoptosis by triggering both intrinsic and extrinsic caspase pathways.