Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Mittersteiner, M.; Pereira, G. S.; Silva, Y.; Wessjohann, L. A.; Bonacorso, H. G.; Martins, M. A. P.; Zanatta, N.;Substituent-driven selective N-/O-alkylation of 4-(trihalomethyl)pyrimidin-2(1H)-ones using brominated enonesJ. Org. Chem.874590-4602(2022)DOI: 10.1021/acs.joc.1c02919
The selective N- or O-alkylation of 4-(trihalomethyl)-pyrimidin-2(1H)-ones, using 5-bromo enones/enaminones as alkylating agents, is reported. It was found that the selectivity toward the N-or O-regioisomer is driven by the substituent present at the 6-position of the pyrimidine ring, thus enabling the preparation of each isomer as the sole product, in 60−95% yields. Subsequent cyclocondensation of the enaminone moiety with nitrogen dinucleophiles led to pyrimidine−azole conjugates in 55−83% yields.
Publikation
Bürstenbinder, K.; Mitra, D.; Quegwer, J.;Functions of IQD proteins as hubs in cellular calcium and auxin signaling: A toolbox for shape formation and tissue-specification in plants?Plant Signal Behav.12e1331198(2017)DOI: 10.1080/15592324.2017.1331198
Calcium (Ca2+) ions play pivotal roles as second messengers in intracellular signal transduction, and coordinate many biological processes. Changes in intracellular Ca2+ levels are perceived by Ca2+ sensors such as calmodulin (CaM) and CaM-like (CML) proteins, which transduce Ca2+ signals into cellular responses by regulation of diverse target proteins. Insights into molecular functions of CaM targets are thus essential to understand the molecular and cellular basis of Ca2+ signaling. During the last decade, IQ67-domain (IQD) proteins emerged as the largest class of CaM targets in plants with mostly unknown functions. In the March issue of Plant Physiology, we presented the first comprehensive characterization of the 33-membered IQD family in Arabidopsis thaliana. We showed, by analysis of the subcellular localization of translational green fluorescent protein (GFP) fusion proteins, that most IQD members label microtubules (MTs), and additionally often localize to the cell nucleus or to membranes, where they recruit CaM Ca2+ sensors. Important functions at MTs are supported by altered MT organization and plant growth in IQD gain-of-function lines. Because IQD proteins share structural hallmarks of scaffold proteins, we propose roles of IQDs in the assembly of macromolecular complexes to orchestrate Ca2+ CaM signaling from membranes to the nucleus. Interestingly, expression of several IQDs is regulated by auxin, which suggests functions of IQDs as hubs in cellular auxin and calcium signaling to regulate plant growth and development.
Publikation
Wessjohann, L. A.; Morejon, M. C.; Ojeda, G. M.; Rhoden, C. R. B.; Rivera, D. G.;Applications of Convertible Isonitriles in the Ligation and Macrocyclization of Multicomponent Reaction-Derived Peptides and DepsipeptidesJ. Org. Chem.816535-6545(2016)DOI: 10.1021/acs.joc.6b01150
Peptide ligation and macrocyclization are among the most relevant approaches in the field of peptide chemistry. Whereas a variety of strategies relying on coupling reagents and native chemical ligation are available, there is a continuous need for efficient peptide ligation and cyclization methods. Herein we report on the utilization of convertible isonitriles as effective synthetic tools for the ligation and macrocyclization of peptides arising from isocyanide-based multicomponent reactions. The strategy relies on the use of convertible isonitriles—derived from Fukuyama amines—and peptide carboxylic acids in Ugi and Passerini reactions to afford N-alkylated peptides and depsipeptides, respectively, followed by conversion of the C-terminal amide onto either N-peptidoacyl indoles or pyrroles. Such activated peptides proved efficient in the ligation to peptidic, lipidic and fluorescently labeled amines and in macrocyclization protocols. As a result, a wide set of N-substituted peptides (with methyl, glycosyl and amino acids as N-substituents), cyclic N-methylated peptides and a depsipeptide were produced in good yields using conditions that involve either classical heating or microwave irradiation. This report improves the repertoire of peptide covalent modification methods by exploiting the synthetic potential of multicomponent reactions and convertible isonitriles.
Publikation
Wasternack, C.; Hause, B.;OPDA-Ile – a new JA-Ile-independent signal?Plant Signal Behav.11e1253646(2016)DOI: 10.1080/15592324.2016.1253646
Expression takes place for most of the jasmonic acid (JA)-induced genes in a COI1-dependent manner via perception of its conjugate JA-Ile in the SCFCOI1-JAZ co-receptor complex. There are, however, numerous genes and processes, which are preferentially induced COI1-independently by the precursor of JA, 12-oxo-phytodienoic acid (OPDA). After recent identification of the Ile-conjugate of OPDA, OPDA-Ile, biological activity of this compound could be unequivocally proven in terms of gene expression. Any interference of OPDA, JA, or JA-Ile in OPDA-Ile-induced gene expression could be excluded by using different genetic background. The data suggest individual signaling properties of OPDA-Ile. Future studies for analysis of an SCFCOI1-JAZ co-receptor-independent route of signaling are proposed.