Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Morgan, I.; Rennert, R.; Berger, R.; Jelača, S.; Maksimović-Ivanić, D.; Dunđerović, D.; Mijatović, S.; Kaluđerović, G. N.; Wessjohann, L. A.;The impact of 9-azaglycophymine and phenylguanidine derivatives on the proliferation of various breast cancer cell lines in vitro and in vivoSci. Rep.1428126(2024)DOI: 10.1038/s41598-024-71624-8
Quinazolinones, particularly 9-azaglycophymines, and closely related derivatives and precursors were tested in vitro against various breast cancer cell lines representing the major types of breast tumors. Among the 49 compounds tested, azaglycophymine derivative 19 with an electron-withdrawing substituent demonstrated the most significant anti-proliferative effects, with IC50 values of around 4 µM. Extensive cell-based investigations revealed that compound 19 induced caspase-dependent apoptosis in HCC1937 (human TNBC), BT-474 (human HER2+/HR+), and 4T1 (mouse TNBC) cells. In contrast, in MDA-MB-468 (human TNBC) and MCF-7 (human HR+) cells, the cell death was induced via a non-apoptotic pathway. The in vivo efficacy of compound 19 was validated using a syngeneic orthotopic 4T1 model in BALB/c mice, resulting in significant reduction of 4T1 breast tumor growth upon intraperitoneal (i.p.) application of doses of 5 or 20 mg/kg. These findings highlight the potential of compound 19 as a promising scaffold for the development of new therapeutic agents for various types of breast cancer and a first structure-activity insight.
Publikation
Mamadalieva, N. Z.; Šoral, M.; Kysil, E.; Stark, P.; Frolov, A.; Wessjohann, L. A.;Comparative metabolic profiling and quantitative analysis of metabolites in different tissues of Ajuga turkestanica by ESI-UHPLC-QqTOF-MS and NMRSci. Rep.1428179(2024)DOI: 10.1038/s41598-024-71546-5
Ajuga turkestanica preparations are used as anti-aging cosmeceuticals and for medicinal purposes. Herein we describe the characterization and quantification of its metabolites in different organs using UHPLC-MS and NMR spectroscopy. A total of 51 compounds belonging to various phytochemical classes (11 flavonoids, 10 ecdysteroids, 9 diterpenes, 6 fatty acids, 5 iridoids, 3 phenylpropanoids, 3 sugars, 2 phenolics, 1 coumarin, 1 triterpene) were annotated and tentatively identified by UHPLC-ESI-QqTOF-MS/MS of methanolic extracts obtained separately from the organs. 1D and 2D NMR spectroscopy independently confirmed the identity of six major compounds. The abundances of these main constituents in flowers, fruits, leaves, roots, seeds, and stems were compared and quantified using 1H NMR. The results showed that 8-O-acetylharpagide, 20-hydroxyecdysone (ecdysterone) and ajugachin B were the most abundant constituents in the species. The two major compounds, 8-O-acetylharpagide and 20-hydroxyecdysone, were chosen as the markers for the quality assessment of A. turkestanica material. The methanolic extract of the aerial parts of A. turkestanica showed no noteworthy anthelmintic (antihelmintic), antifungal, or cytotoxic effect in in vitro assays.
Publikation
Liu, N.; Jiang, X.; Zhong, G.; Wang, W.; Hake, K.; Matschi, S.; Lederer, S.; Hoehenwarter, W.; Sun, Q.; Lee, J.; Romeis, T.; Tang, D.;CAMTA3 repressor destabilization triggers TIR domain protein TN2-mediated autoimmunity in the Arabidopsis exo70B1 mutantPlant Cell362021-2040(2024)DOI: 10.1093/plcell/koae036
Calcium-dependent protein kinases (CPKs) can decode and translate intracellular calcium signals to induce plant immunity. Mutation of the exocyst subunit gene EXO70B1 causes autoimmunity that depends on CPK5 and the Toll/interleukin-1 receptor (TIR) domain resistance protein TIR-NBS2 (TN2), where direct interaction with TN2 stabilizes CPK5 kinase activity. However, how the CPK5–TN2 interaction initiates downstream immune responses remains unclear. Here, we show that, besides CPK5 activity, the physical interaction between CPK5 and functional TN2 triggers immune activation in exo70B1 and may represent reciprocal regulation between CPK5 and the TIR domain functions of TN2 in Arabidopsis (Arabidopsis thaliana). Moreover, we detected differential phosphorylation of the calmodulin-binding transcription activator 3 (CAMTA3) in the cpk5 background. CPK5 directly phosphorylates CAMTA3 at S964, contributing to its destabilization. The gain-of-function CAMTA3A855V variant that resists CPK5-induced degradation rescues immunity activated through CPK5 overexpression or exo70B1 mutation. Thus, CPK5-mediated immunity is executed through CAMTA3 repressor degradation via phosphorylation-induced and/or calmodulin-regulated processes. Conversely, autoimmunity in camta3 also partially requires functional CPK5. While the TIR domain activity of TN2 remains to be tested, our study uncovers a TN2–CPK5–CAMTA3 signaling module for exo70B1-mediated autoimmunity, highlighting the direct embedding of a calcium-sensing decoder element within resistance signalosomes.
Publikation
Liese, A.; Eichstädt, B.; Lederer, S.; Schulz, P.; Oehlschläger, J.; Matschi, S.; Feijó, J. A.; Schulze, W. X.; Konrad, K. R.; Romeis, T.;Imaging of plant calcium-sensor kinase conformation monitors real time calcium-dependent decoding in plantaPlant Cell36276-296(2024)DOI: 10.1093/plcell/koad196
Changes in cytosolic calcium (Ca2+) concentration are among the earliest reactions to a multitude of stress cues. While a plethora of Ca2+-permeable channels may generate distinct Ca2+ signatures and contribute to response specificities, the mechanisms by which Ca2+ signatures are decoded are poorly understood. Here we developed a genetically encoded FRET (Förster resonance energy transfer)-based reporter that visualizes the conformational changes in Ca2+-dependent protein kinases (CDPKs/CPKs). We focused on two CDPKs with distinct Ca2+-sensitivities, highly Ca2+-sensitive Arabidopsis (Arabidopsis thaliana) AtCPK21 and rather Ca2+-insensitive AtCPK23, to report conformational changes accompanying kinase activation. In tobacco (Nicotiana tabacum) pollen tubes, which naturally display coordinated spatial and temporal Ca2+ fluctuations, CPK21-FRET, but not CPK23-FRET, reported oscillatory emission ratio changes mirroring cytosolic Ca2+ changes, pointing to the isoform-specific Ca2+-sensitivity and reversibility of the conformational change. In Arabidopsis guard cells, CPK21-FRET-monitored conformational dynamics suggest that CPK21 serves as a decoder of signal-specific Ca2+ signatures in response to abscisic acid and the flagellin peptide flg22. Based on these data, CDPK-FRET is a powerful approach for tackling real-time live-cell Ca2+ decoding in a multitude of plant developmental and stress responses.