Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Pigolev, A. V.; Miroshnichenko, D.; Dolgov, S. V.; Alekseeva, V. V.; Pushin, A. S.; Degtyaryova, V. I.; Klementyeva, A.; Gorbach, D.; Leonova, T.; Basnet, A.; Frolov, A. A.; Savchenko, T. V.;Endogenously produced jasmonates affect leaf growth and improve osmotic stress tolerance in emmer wheatBiomolecules131775(2023)DOI: 10.3390/biom13121775
In light of recent climate change, with its rising temperatures and precipitation changes, we are facing the need to increase the valuable crop’s tolerance against unfavorable environmental conditions. Emmer wheat is a cereal crop with high nutritional value. We investigated the possibility of improving the stress tolerance of emmer wheat by activating the synthesis of the stress hormone jasmonate by overexpressing two genes of the jasmonate biosynthetic pathway from Arabidopsis thaliana, ALLENE OXIDE SYNTHASE (AtAOS) and OXOPHYTODIENOATE REDUCTASE 3 (AtOPR3). Analyses of jasmonates in intact and mechanically wounded leaves of non-transgenic and transgenic plants showed that the overexpression of each of the two genes resulted in increased wounding-induced levels of jasmonic acid and jasmonate-isoleucine. Against all expectations, the overexpression of AtAOS, encoding a chloroplast-localized enzyme, does not lead to an increased level of the chloroplast-formed 12-oxo-phytodienoic acid (OPDA), suggesting an effective conversion of OPDA to downstream products in wounded emmer wheat leaves. Transgenic plants overexpressing AtAOS or AtOPR3 with increased jasmonate levels show a similar phenotype, manifested by shortening of the first and second leaves and elongation of the fourth leaf, as well as increased tolerance to osmotic stress induced by the presence of the polyethylene glycol (PEG) 6000.
Publikation
Parra Daza, L. E.; Suarez Medina, L.; Tafur Rangel, A. E.; Fernández-Niño, M.; Mejía-Manzano, L. A.; González-Valdez, J.; Reyes, L. H.; González Barrios, A. F.;Design and assembly of a biofactory for (2S)-naringenin production in Escherichia coli: Effects of oxygen transfer on yield and gene expressionBiomolecules13565(2023)DOI: 10.3390/biom13030565
The molecule (2S)-naringenin is a scaffold molecule with several nutraceutical properties. Currently, (2S)-naringenin is obtained through chemical synthesis and plant isolation. However, these methods have several drawbacks. Thus, heterologous biosynthesis has emerged as a viable alternative to its production. Recently, (2S)-naringenin production studies in Escherichia coli have used different tools to increase its yield up to 588 mg/L. In this study, we designed and assembled a bio-factory for (2S)-naringenin production. Firstly, we used several parametrized algorithms to identify the shortest pathway for producing (2S)-naringenin in E. coli, selecting the genes phenylalanine ammonia lipase (pal), 4-coumarate: CoA ligase (4cl), chalcone synthase (chs), and chalcone isomerase (chi) for the biosynthetic pathway. Then, we evaluated the effect of oxygen transfer on the production of (2S)-naringenin at flask (50 mL) and bench (4 L culture) scales. At the flask scale, the agitation rate varied between 50 rpm and 250 rpm. At the bench scale, the dissolved oxygen was kept constant at 5% DO (dissolved oxygen) and 40% DO, obtaining the highest (2S)-naringenin titer (3.11 ± 0.14 g/L). Using genome-scale modeling, gene expression analysis (RT-qPCR) of oxygen-sensitive genes was obtained.
Publikation
Rodríguez-Núñez, K.; Cortés-Monroy, A.; Serey, M.; Ensari, Y.; Davari, M. D.; Bernal, C.; Martinez, R.;Modulating substrate specificity of Rhizobium sp. Histamine Dehydrogenase through protein engineering for food quality applicationsMolecules283748(2023)DOI: 10.3390/molecules28093748
Histamine is a biogenic amine found in fish-derived and fermented food products with physiological relevance since its concentration is proportional to food spoilage and health risk for sensitive consumers. There are various analytical methods for histamine quantification from food samples; however, a simple and quick enzymatic detection and quantification method is highly desirable. Histamine dehydrogenase (HDH) is a candidate for enzymatic histamine detection; however, other biogenic amines can change its activity or produce false positive results with an observed substrate inhibition at higher concentrations. In this work, we studied the effect of site saturation mutagenesis in Rhizobium sp. Histamine Dehydrogenase (Rsp HDH) in nine amino acid positions selected through structural alignment analysis, substrate docking, and proximity to the proposed histamine-binding site. The resulting libraries were screened for histamine and agmatine activity. Variants from two libraries (positions 72 and 110) showed improved histamine/agmatine activity ratio, decreased substrate inhibition, and maintained thermal resistance. In addition, activity characterization of the identified Phe72Thr and Asn110Val HDH variants showed a clear substrate inhibition curve for histamine and modified kinetic parameters. The observed maximum velocity (Vmax) increased for variant Phe72Thr at the cost of an increased value for the Michaelis–Menten constant (Km) for histamine. The increased Km value, decreased substrate inhibition, and biogenic amine interference observed for variant Phe72Thr support a tradeoff between substrate affinity and substrate inhibition in the catalytic mechanism of HDHs. Considering this tradeoff for future enzyme engineering of HDH could lead to breakthroughs in performance increases and understanding of this enzyme class.
Publikation
Rashan, L. J.; Özenver, N.; Boulos, J. C.; Dawood, M.; Roos, W. P.; Franke, K.; Papasotiriou, I.; Wessjohann, L. A.; Fiebig, H.-H.; Efferth, T.;Molecular modes of action of an aqueous Nerium oleander extract in cancer cells in vitro and in vivoMolecules281871(2023)DOI: 10.3390/molecules28041871
Cancer drug resistance remains a major obstacle in clinical oncology. As most anticancer drugs are of natural origin, we investigated the anticancer potential of a standardized cold-water leaf extract from Nerium oleander L., termed Breastin. The phytochemical characterization by nuclear magnetic resonance spectroscopy (NMR) and low- and high-resolution mass spectrometry revealed several monoglycosidic cardenolides as major constituents (adynerin, neritaloside, odoroside A, odoroside H, oleandrin, and vanderoside). Breastin inhibited the growth of 14 cell lines from hematopoietic tumors and 5 of 6 carcinomas. Remarkably, the cellular responsiveness of odoroside H and neritaloside was not correlated with all other classical drug resistance mechanisms, i.e., ATP-binding cassette transporters (ABCB1, ABCB5, ABCC1, ABCG2), oncogenes (EGFR, RAS), tumor suppressors (TP53, WT1), and others (GSTP1, HSP90, proliferation rate), in 59 tumor cell lines of the National Cancer Institute (NCI, USA), indicating that Breastin may indeed bypass drug resistance. COMPARE analyses with 153 anticancer agents in 74 tumor cell lines of the Oncotest panel revealed frequent correlations of Breastin with mitosis-inhibiting drugs. Using tubulin-GFP-transfected U2OS cells and confocal microscopy, it was found that the microtubule-disturbing effect of Breastin was comparable to that of the tubulin-depolymerizing drug paclitaxel. This result was verified by a tubulin polymerization assay in vitro and molecular docking in silico. Proteome profiling of 3171 proteins in the NCI panel revealed protein subsets whose expression significantly correlated with cellular responsiveness to odoroside H and neritaloside, indicating that protein expression profiles can be identified to predict the sensitivity or resistance of tumor cells to Breastin constituents. Breastin moderately inhibited breast cancer xenograft tumors in vivo. Remarkably, in contrast to what was observed with paclitaxel monotherapy, the combination of paclitaxel and Breastin prevented tumor relapse, indicating Breastin’s potential for drug combination regimens.