Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Predarska, I.; Saoud, M.; Morgan, I.; Lönnecke, P.; Kaluđerović, G. N.; Hey-Hawkins, E.;Triphenyltin(IV) carboxylates with exceptionally high cytotoxicity against different breast cancer cell linesBiomolecules13595(2023)DOI: 10.3390/biom13040595
Organotin(IV) carboxylates are a class of compounds explored as alternatives to platinum-containing chemotherapeutics due to propitious in vitro and in vivo results, and distinct mechanisms of action. In this study, triphenyltin(IV) derivatives of non-steroidal anti-inflammatory drugs (indomethacin (HIND) and flurbiprofen (HFBP)) are synthesized and characterized, namely [Ph3Sn(IND)] and [Ph3Sn(FBP)]. The crystal structure of [Ph3Sn(IND)] reveals penta-coordination of the central tin atom with almost perfect trigonal bipyramidal geometry with phenyl groups in the equatorial positions and two axially located oxygen atoms belonging to two distinct carboxylato (IND) ligands leading to formation of a coordination polymer with bridging carboxylato ligands. Employing MTT and CV probes, the antiproliferative effects of both organotin(IV) complexes, indomethacin, and flurbiprofen were evaluated on different breast carcinoma cells (BT-474, MDA-MB-468, MCF-7 and HCC1937). [Ph3Sn(IND)] and [Ph3Sn(FBP)], unlike the inactive ligand precursors, were found extremely active towards all examined cell lines, demonstrating IC50 concentrations in the range of 0.076–0.200 µM. Flow cytometry was employed to examine the mode of action showing that neither apoptotic nor autophagic mechanisms were triggered within the first 48 h of treatment. However, both tin(IV) complexes inhibited cell proliferation potentially related to the dramatic reduction in NO production, resulting from downregulation of nitric oxide synthase (iNOS) enzyme expression.
Publikation
Walther, T.; Herzog, R.; Kaluđerović, M. R.; Wagner, C.; Schmidt, H.; Kaluđerović, G. N.;Traceable platinum(II) complexes with alkylene diamine-derived ligands: synthesis, characterization and in vitro studiesJ. Coord. Chem.71243-257(2018)DOI: 10.1080/00958972.2018.1431392
Diiodido- (6a/6b) and dichloridoplatinum(II) complexes (7a/7b) with fluorescent ligands 2-[(2-aminoethyl)amino]ethyl-2-(methylamino)benzoate (5a) and 2-amino-1-(aminoethyl)ethyl-2-(methylamino)benzoate (5b) were prepared and characterized by elemental analysis, ESI-MS analysis, fluorescence spectrometry, as well as 1H, 13C, and 195Pt NMR spectroscopy. All compounds have been tested against A2780 ovarian cancer, A549 lung carcinoma, and HT-29 colon cancer cell lines using sulforhodamine-B assay. The activity increased from ligand precursors, diiodido- to dichloridoplatinum(II) complexes, except against HT-29 cell line where diiodido and dichlorido expressed similar activity. These compounds enter the tumor cells and emit a bright fluorescence at ca. 470 nm, mainly targeting nuclei.
Publikation
Kaluđerović, G. N.; Hernández-Corroto, E.; Brandt, W.; Zmejkovski, B. B.; Gómez-Ruiz, S.;Palladium(II) complexes with R2edda-derived ligandsJ. Coord. Chem.691337-1345(2016)DOI: 10.1080/00958972.2016.1168519
Four palladium(II) complexes with R2edda ligands, dichlorido(O,O′-dialkylethylenediamine-N,N′-diacetate)palladium(II) monohydrates, [PdCl2(R2edda)]∙H2O, R = Me, Et, n-Pr, i-Bu, and the new ligand precursor i-Bu2edda∙2HCl∙H2O, O,O′-diisobutylethylenediamine-N,N′-diacetate dihydrochloride monohydrate, were synthesized and characterized by IR, 1H and 13C NMR spectroscopy, and elemental analysis. DFT calculations were performed for the palladium(II) complexes and a high possibility for isomer formation due to stereogenic N ligand atoms was confirmed. Moreover, DFT simulations revealed energetic profile of isomer formation. Computational outcomes are in agreement with spectroscopic instrumental findings, both strongly indicating a non-stereoselective reaction between selected esters and K2[PdCl4], forming isomers.