Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Jouda, J.-B.; Njoya, E. M.; Fobofou, S. A. T.; Zhou, Z. Y.; Qiang, Z.; Mbazoa, C. D.; Brandt, W.; Zhang, G.-l.; Wandji, J.; Wang, F.;Natural Polyketides Isolated from the Endophytic Fungus
Phomopsis sp. CAM212 with a Semisynthetic Derivative Downregulating
the ERK/IκBα Signaling PathwaysPlanta Med.861032-1042(2020)DOI: 10.1055/a-1212-2930
AbstractThree previously undescribed natural products, phomopsinin A – C
(1 – 3), together with three known compounds, namely,
cis-hydroxymellein (4), phomoxanthone A (5) and
cytochalasin L-696,474 (6), were isolated from the solid culture of
Phomopsis sp. CAM212, an endophytic fungus obtained from Garcinia
xanthochymus. Their structures were determined on the basis of
spectroscopic data, including IR, NMR, and MS. The absolute configurations of
1 and 2 were assigned by comparing their experimental and
calculated ECD spectra. Acetylation of compound 1 yielded 1a, a
new natural product derivative that was tested together with other isolated
compounds on lipopolysaccharide-stimulated RAW 264.7 cells. Cytochalasin
L-696,474 (6) was found to significantly inhibit nitric oxide production,
but was highly cytotoxic to the treated cells, whereas compound 1
slightly inhibited nitric oxide production, which was not significantly
different compared to lipopolysaccharide-treated cells. Remarkably, the
acetylated derivative of 1, compound 1a, significantly inhibited
nitric oxide production with an IC50 value of 14.8 µM and no
cytotoxic effect on treated cells, thereby showing the importance of the acetyl
group in the anti-inflammatory activity of 1a. The study of the mechanism
of action revealed that 1a decreases the expression of inducible nitric
oxide synthase, cyclooxygenase 2, and proinflammatory cytokine IL-6 without an
effect on IL-1β expression. Moreover, it was found that 1a exerts
its anti-inflammatory activity in lipopolysaccharide-stimulated RAW 264.7
macrophage cells by downregulating the activation of ERK1/2 and by preventing
the translocation of nuclear factor κB. Thus, derivatives of phomopsinin
A (1), such as compound 1a, could provide new anti-inflammatory
leads.