Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Schymanski, E. L.; Gallampois, C. M. J.; Krauss, M.; Meringer, M.; Neumann, S.; Schulze, T.; Wolf, S.; Brack, W.;Consensus Structure Elucidation Combining GC/EI-MS, Structure Generation, and Calculated PropertiesAnal. Chem.843287-3295(2012)DOI: 10.1021/ac203471y
This article explores consensus structure elucidation on the basis of GC/EI-MS, structure generation, and calculated properties for unknown compounds. Candidate structures were generated using the molecular formula and substructure information obtained from GC/EI-MS spectra. Calculated properties were then used to score candidates according to a consensus approach, rather than filtering or exclusion. Two mass spectral match calculations (MOLGEN-MS and MetFrag), retention behavior (Lee retention index/boiling point correlation, NIST Kovat’s retention index), octanol–water partitioning behavior (log Kow), and finally steric energy calculations were used to select candidates. A simple consensus scoring function was developed and tested on two unknown spectra detected in a mutagenic subfraction of a water sample from the Elbe River using GC/EI-MS. The top candidates proposed using the consensus scoring technique were purchased and confirmed analytically using GC/EI-MS and LC/MS/MS. Although the compounds identified were not responsible for the sample mutagenicity, the structure-generation-based identification for GC/EI-MS using calculated properties and consensus scoring was demonstrated to be applicable to real-world unknowns and suggests that the development of a similar strategy for multidimensional high-resolution MS could improve the outcomes of environmental and metabolomics studies.