Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Farag, M. A.; Porzel, A.; Schmidt, J.; Wessjohann, L. A.;Metabolite profiling and fingerprinting of commercial cultivars of Humulus lupulus L. (hop): a comparison of MS and NMR methods in metabolomicsMetabolomics8492-507(2012)DOI: 10.1007/s11306-011-0335-y
Hop (Humulus lupulus L. Cannabaceae) is an economically important crop. In addition to its role in beer brewing, its pharmaceutical applications have been of increasing importance in recent years. Bitter acids (prenylated polyketides), prenylflavonoids and essential oils, are the primary phytochemical components that account for hop medicinal value. An integrated approach utilizing nuclear magnetic resonance (NMR) and mass spectrometry (MS) techniques was used for the first large-scale metabolite profiling in Humulus lupulus. Resins and extracts prepared from 13 hop cultivars were analysed using NMR, liquid chromatography (LC)-MS and fourier transform ion cyclotron resonance (FTICR)-MS in parallel and subjected to principal component analysis (PCA). A one pot extraction method, compatible with both MS and NMR measurement was developed to help rule out effects due to differences in extraction protocols. Under optimised conditions, we were able to simultaneously quantify and identify 46 metabolites including 18 bitter acids, 12 flavonoids, 3 terpenes, 3 fatty acids and 2 sugars. Cultivars segregation in PCA plots generated from both LC-MS and NMR data were found comparable and mostly influenced by differences in bitter acids composition among cultivars. FTICR-MS showed inconsistent PCA loading plot results which are likely due to preferential ionisation and also point to the presence of novel isoprenylated metabolites in hop. This comparative metabolomic approach provided new insights for the complementariness and coincidence for these different technology platform applications in hop and similar plant metabolomics projects.
Publikation
Frick, S.; Chitty, J. A.; Kramell, R.; Schmidt, J.; Allen, R. S.; Larkin, P. J.; Kutchan, T. M.;Transformation of opium poppy (Papaver somniferum L.) with antisense berberine bridge enzyme gene (anti-bbe) via somatic embryogenesis results in an altered ratio of alkaloids in latex but not in rootsTransgenic Res.13607-613(2004)DOI: 10.1007/s11248-004-2892-6
The berberine bridge enzyme cDNA bbe from Papaver somniferumL. was transformed in antisense orientation into seedling explants of the industrial elite line C048-6-14-64. In this way, 84 phenotypically normal T0 plants derived from embryogenic callus cultures were produced. The selfed progeny of these 84 plants yielded several T1 plants with an altered alkaloid profile. One of these plants T1-47, and its siblings T2-1.2 and T2-1.5 are the subject of the present work. The transformation of these plants was evaluated by PCR, and northern and Southern hybridisation. The transgenic plants contained one additional copy of the transgene. The alkaloid content in latex and roots was determined with HPLC and LC-MS. We observed an increased concentration of several pathway intermediates from all biosynthetic branches, e.g., reticuline, laudanine, laudanosine, dehydroreticuline, salutaridine and (S)-scoulerine. The transformation altered the ratio of morphinan and tetrahydrobenzylisoquinoline alkaloids in latex but not the benzophenanthridine alkaloids in roots. The altered alkaloid profile is heritable at least to the T2 generation. These results are the first example of metabolic engineering of the alkaloid pathways in opium poppy and, to our knowledge, the first time that an alkaloid biosynthetic gene has been transformed into the native species, followed by regeneration into a mature plant to enable analyses of the effect of the transgene on metabolism over several generations.