Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Blatt-Janmaat, K.; Neumann, S.; Schmidt, F.; Ziegler, J.; Qu, Y.; Peters, K.;Impact of in vitro phytohormone treatments on the metabolome of the leafy liverwort Radula complanata (L.) DumortMetabolomics1917(2023)DOI: 10.1007/s11306-023-01979-y
Introduction
Liverworts are a group of non-vascular plants that possess unique metabolism not found in other plants. Many liverwort metabolites have interesting structural and biochemical characteristics, however the fluctuations of these metabolites in response to stressors is largely unknown.
Objectives
To investigate the metabolic stress-response of the leafy liverwort Radula complanata.
Methods
Five phytohormones were applied exogenously to in vitro cultured R. complanata and an untargeted metabolomic analysis was conducted. Compound classification and identification was performed with CANOPUS and SIRIUS while statistical analyses including PCA, ANOVA, and variable selection using BORUTA were conducted to identify metabolic shifts.Results
It was found that R. complanata was predominantly composed of carboxylic acids and derivatives, followed by benzene and substituted derivatives, fatty acyls, organooxygen compounds, prenol lipids, and flavonoids. The PCA revealed that samples grouped based on the type of hormone applied, and the variable selection using BORUTA (Random Forest) revealed 71 identified and/or classified features that fluctuated with phytohormone application. The stress-response treatments largely reduced the production of the selected primary metabolites while the growth treatments resulted in increased production of these compounds. 4-(3-Methyl-2-butenyl)-5-phenethylbenzene-1,3-diol was identified as a biomarker for the growth treatments while GDP-hexose was identified as a biomarker for the stress-response treatments.
Conclusion
Exogenous phytohormone application caused clear metabolic shifts in Radula complanata that deviate from the responses of vascular plants. Further identification of the selected metabolite features can reveal metabolic biomarkers unique to liverworts and provide more insight into liverwort stress responses.
Publikation
Trempel, F.; Eschen‐Lippold, L.; Bauer, N.; Ranf, S.; Westphal, L.; Scheel, D.; Lee, J.;A mutation in Asparagine‐Linked Glycosylation 12 (ALG12) leads to receptor misglycosylation and attenuated responses to multiple microbial elicitorsFEBS Lett.5942440-2451(2020)DOI: 10.1002/1873-3468.13850
Changes in cellular calcium levels are one of the earliest signalling events in plants exposed to pathogens or other exogenous factors. In a genetic screen, we identified an Arabidopsis thaliana ‘changed calcium elevation 1 ’ (cce1 ) mutant with attenuated calcium response to the bacterial flagellin flg22 peptide and several other elicitors. Whole genome re‐sequencing revealed a mutation in ALG12 (Asparagine‐Linked Glycosylation 12 ) that encodes the mannosyltransferase responsible for adding the eighth mannose residue in an α‐1,6 linkage to the dolichol‐PP‐oligosaccharide N ‐glycosylation glycan tree precursors. While properly targeted to the plasma membrane, misglycosylation of several receptors in the cce1 background suggests that N ‐glycosylation is required for proper functioning of client proteins.
Publikation
Farag, M. A.; El Senousy, A. S.; El-Ahmady, S. H.; Porzel, A.; Wessjohann, L. A.;Comparative metabolome-based classification of Senna drugs: a prospect for phyto-equivalency of its different commercial productsMetabolomics1580(2019)DOI: 10.1007/s11306-019-1538-x
IntroductionThe demand to develop efficient and reliable analytical methods for the quality control of nutraceuticals is on the rise, together with an increase in the legal requirements for safe and consistent levels of its active principles.ObjectiveTo establish a reliable model for the quality control of widely used Senna preparations used as laxatives and assess its phyto-equivalency.MethodsA comparative metabolomics approach via NMR and MS analyses was employed for the comprehensive measurement of metabolites and analyzed using chemometrics.ResultsUnder optimized conditions, 30 metabolites were simultaneously identified and quantified including anthraquinones, bianthrones, acetophenones, flavonoid conjugates, naphthalenes, phenolics, and fatty acids. Principal component analysis (PCA) was used to define relative metabolite differences among Senna preparations. Furthermore, quantitative 1H NMR (qHNMR) was employed to assess absolute metabolites levels in preparations. Results revealed that 6-hydroxy musizin or tinnevellin were correlated with active metabolites levels, suggesting the use of either of these naphthalene glycosides as markers for official Senna drugs authentication.ConclusionThis study provides the first comparative metabolomics approach utilizing NMR and UPLC–MS to reveal for secondary metabolite compositional differences in Senna preparations that could readily be applied as a reliable quality control model for its analysis.
Publikation
Farag, M. A.; Maamoun, A. A.; Meyer, A.; Wessjohann, L. A.;Salicylic acid and its derivatives elicit the production of diterpenes and sterols in corals and their algal symbionts: a metabolomics approach to elicitor SARMetabolomics14127(2018)DOI: 10.1007/s11306-018-1416-y
IntroductionThe production of marine drugs in its normal habitats is often low and depends greatly on ecological conditions. Chemical synthesis of marine drugs is not economically feasible owing to their complex structures. Biotechnology application via elicitation represents a promising tool to enhance metabolites yield that has yet to be explored in soft corals.ObjectivesStudy the elicitation impact of salicylic acid (SA) and six analogues in addition to a systemic acquired resistance inducer on secondary metabolites accumulation in the soft coral Sarcophyton ehrenbergi along with the symbiont zooxanthellae and if SA elicitation effect is extended to other coral species S. glaucum and Lobophyton pauciliforum.MethodsPost elicitation in the three corals and zooxanthella, metabolites were extracted and analyzed via UHPLC-MS coupled with chemometric tools.ResultsMultivariate data analysis of the UHPLC-MS data set revealed clear segregation of SA, amino-SA, and acetyl-SA elicited samples. An increased level ca. 6- and 8-fold of the diterpenes viz., sarcophytonolide I, sarcophine and a C28-sterol, was observed in SA and amino-SA groups, respectively. Post elicitation, the level of diepoxy-cembratriene increased 1.5-fold and 2.4-fold in 1 mM SA, and acetyl-SA (aspirin) treatment groups, respectively. S. glaucum and Lobophyton pauciliforum showed a 2-fold increase of diepoxy-cembratriene levels.ConclusionThese results suggest that SA could function as a general and somewhat selective diterpene inducing signaling molecule in soft corals. Structural consideration reveals initial structure–activity relationship (SAR) in SA derivatives that seem important for efficient diterpene and sterol elicitation.