Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
In plant ecology, biochemical analyses of bryophytes and vascular plants are often conducted on dried herbarium specimen as species typically grow in distant and inaccessible locations. Here, we present an automated in silico compound classification framework to annotate metabolites using an untargeted data independent acquisition (DIA)–LC/MS–QToF-sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH) ecometabolomics analytical method. We perform a comparative investigation of the chemical diversity at the global level and the composition of metabolite families in ten different species of bryophytes using fresh samples collected on-site and dried specimen stored in a herbarium for half a year. Shannon and Pielou’s diversity indices, hierarchical clustering analysis (HCA), sparse partial least squares discriminant analysis (sPLS-DA), distance-based redundancy analysis (dbRDA), ANOVA with post-hoc Tukey honestly significant difference (HSD) test, and the Fisher’s exact test were used to determine differences in the richness and composition of metabolite families, with regard to herbarium conditions, ecological characteristics, and species. We functionally annotated metabolite families to biochemical processes related to the structural integrity of membranes and cell walls (proto-lignin, glycerophospholipids, carbohydrates), chemical defense (polyphenols, steroids), reactive oxygen species (ROS) protection (alkaloids, amino acids, flavonoids), nutrition (nitrogen- and phosphate-containing glycerophospholipids), and photosynthesis. Changes in the composition of metabolite families also explained variance related to ecological functioning like physiological adaptations of bryophytes to dry environments (proteins, peptides, flavonoids, terpenes), light availability (flavonoids, terpenes, carbohydrates), temperature (flavonoids), and biotic interactions (steroids, terpenes). The results from this study allow to construct chemical traits that can be attributed to biogeochemistry, habitat conditions, environmental changes and biotic interactions. Our classification framework accelerates the complex annotation process in metabolomics and can be used to simplify biochemical patterns. We show that compound classification is a powerful tool that allows to explore relationships in both molecular biology by “zooming in” and in ecology by “zooming out”. The insights revealed by our framework allow to construct new research hypotheses and to enable detailed follow-up studies.
Publikation
Peters, K.; Herman, S.; Khoonsari, P. E.; Burman, J.; Neumann, S.; Kultima, K.;Metabolic drift in the aging nervous system is reflected in human cerebrospinal fluidSci. Rep.1118822(2021)DOI: 10.1038/s41598-021-97491-1
Chronic diseases affecting the central nervous system (CNS) like
Alzheimer’s or Parkinson’s disease typically develop with advanced
chronological age. Yet, aging at the metabolic level has been explored
only sporadically in humans using biofluids in close proximity to the
CNS such as the cerebrospinal fluid (CSF). We have used an untargeted
liquid chromatography high-resolution mass spectrometry (LC-HRMS) based
metabolomics approach to measure the levels of metabolites in the CSF of
non-neurological control subjects in the age of 20 up to 74. Using a
random forest-based feature selection strategy, we extracted 69 features
that were strongly related to age (page
Preprints
Peters, K.; Bradbury, J.; Bergmann, S.; Capuccini, M.; Cascante, M.; de Atauri, P.; Ebbels, T. M. D.; Foguet, C.; Glen, R.; Gonzalez-Beltran, A.; Guenther, U.; Handakas, E.; Hankemeier, T.; Haug, K.; Herman, S.; Holub, P.; Izzo, M.; Jacob, D.; Johnson, D.; Jourdan, F.; Kale, N.; Karaman, I.; Khalili, B.; Emami Khoonsari, P.; Kultima, K.; Lampa, S.; Larsson, A.; Ludwig, C.; Moreno, P.; Neumann, S.; Novella, J. A.; O'Donovan, C.; Pearce, J. T. M.; Peluso, A.; Pireddu, L.; Piras, M. E.; Reed, M. A. C.; Rocca-Serra, P.; Roger, P.; Rosato, A.; Rueedi, R.; Ruttkies, C.; Sadawi, N.; Salek, R.; Sansone, S.-A.; Selivanov, V.; Spjuth, O.; Schober, D.; Thévenot, E. A.; Tomasoni, M.; van Rijswijk, M.; van Vliet, M.; Viant, M. R.; Weber, R. J. M.; Zanetti, G.; Steinbeck, C.;PhenoMeNal: Processing and analysis of Metabolomics data in the CloudbioRxiv(2018)DOI: 10.1101/409151
Background Metabolomics is the comprehensive study of a multitude of small molecules to gain insight into an organism’s metabolism. The research field is dynamic and expanding with applications across biomedical, biotechnological and many other applied biological domains. Its computationally-intensive nature has driven requirements for open data formats, data repositories and data analysis tools. However, the rapid progress has resulted in a mosaic of independent – and sometimes incompatible – analysis methods that are difficult to connect into a useful and complete data analysis solution.Findings The PhenoMeNal (Phenome and Metabolome aNalysis) e-infrastructure provides a complete, workflow-oriented, interoperable metabolomics data analysis solution for a modern infrastructure-as-a-service (IaaS) cloud platform. PhenoMeNal seamlessly integrates a wide array of existing open source tools which are tested and packaged as Docker containers through the project’s continuous integration process and deployed based on a kubernetes orchestration framework. It also provides a number of standardized, automated and published analysis workflows in the user interfaces Galaxy, Jupyter, Luigi and Pachyderm.Conclusions PhenoMeNal constitutes a keystone solution in cloud infrastructures available for metabolomics. It provides scientists with a ready-to-use, workflow-driven, reproducible and shareable data analysis platform harmonizing the software installation and configuration through user-friendly web interfaces. The deployed cloud environments can be dynamically scaled to enable large-scale analyses which are interfaced through standard data formats, versioned, and have been tested for reproducibility and interoperability. The flexible implementation of PhenoMeNal allows easy adaptation of the infrastructure to other application areas and ‘omics research domains.
Publikation
Peters, K.; Gorzolka, K.; Bruelheide, H.; Neumann, S.;Seasonal variation of secondary metabolites in nine different bryophytesEcol. Evol.89105-9117(2018)DOI: 10.1002/ece3.4361
Bryophytes occur in almost all land ecosystems and contribute to global biogeochemical cycles, ecosystem functioning, and influence vegetation dynamics. As growth and biochemistry of bryophytes are strongly dependent on the season, we analyzed metabolic variation across seasons with regard to ecological characteristics and phylogeny. Using bioinformatics methods, we present an integrative and reproducible approach to connect ecology with biochemistry. Nine different bryophyte species were collected in three composite samples in four seasons. Untargeted liquid chromatography coupled with mass spectrometry (LC/MS) was performed to obtain metabolite profiles. Redundancy analysis, Pearson's correlation, Shannon diversity, and hierarchical clustering were used to determine relationships among species, seasons, ecological characteristics, and hierarchical clustering. Metabolite profiles of Marchantia polymorpha and Fissidens taxifolius which are species with ruderal life strategy (R‐selected) showed low seasonal variability, while the profiles of the pleurocarpous mosses and Grimmia pulvinata which have characteristics of a competitive strategy (C‐selected) were more variable. Polytrichum strictum and Plagiomnium undulatum had intermediary life strategies. Our study revealed strong species‐specific differences in metabolite profiles between the seasons. Life strategies, growth forms, and indicator values for light and soil were among the most important ecological predictors. We demonstrate that untargeted Eco‐Metabolomics provide useful biochemical insight that improves our understanding of fundamental ecological strategies.