Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Chen, Y.; Hoehenwarter, W.;Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomicsPlant J.98370-384(2019)DOI: 10.1111/tpj.14215
Mass spectrometry has been instrumental in enabling the study of molecular signaling on a cellular scale by way of site‐specific quantification of protein post‐translational modifications, in particular phosphorylation. Here we describe an updated tandem metal oxide affinity chromatography (MOAC) combined phosphoprotein/phosphopeptide enrichment strategy, a scalable phosphoproteomics approach that allows rapid identification of thousands of phosphopeptides in plant materials. We implemented modifications to several steps of the original tandem MOAC procedure to increase the amount of quantified phosphopeptides and hence site‐specific phosphorylation of proteins in a sample beginning with the less amounts of tissue and a substantially smaller amount of extracted protein. We applied this technology to generate time‐resolved maps of boron signaling in Arabidopsis roots. We show that the successive enrichment of phosphoproteins in a first and phosphopeptide extraction in a second step using our optimized procedure strongly enriched the root phosphoproteome. Our results reveal that boron deficiency affects over 20% of the measured root phosphoproteome and that many phosphorylation sites with known biological function, and an even larger number of previously undescribed sites, are modified during the time course of boron deficiency. We identify transcription factors as key regulators of hormone signaling pathways that modulate gene expression in boron deprived plants. Furthermore, our phosphorylation kinetics data demonstrate that mitogen‐activated protein kinase (MAPK) cascades mediate polarized transport of boron in Arabidopsis roots. Taken together, we establish and validate a robust approach for proteome‐wide phosphorylation analysis in plant biology research.
Publikation
Chen, Y.; Hoehenwarter, W.; Weckwerth, W.;Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignmentPlant J.631-17(2010)DOI: 10.1111/j.1365-313X.2010.04218.x
Protein phosphorylation/dephosphorylation is a central post‐translational modification in plant hormone signaling, but little is known about its extent and function. Although pertinent protein kinases and phosphatases have been predicted and identified for a variety of hormone responses, classical biochemical approaches have so far revealed only a few candidate proteins and even fewer phosphorylation sites. Here we performed a global quantitative analysis of the Arabidopsis phosphoproteome in response to a time course of treatments with various plant hormones using phosphopeptide enrichment and subsequent mass accuracy precursor alignment (MAPA). The use of three time points, 1, 3 and 6 h, in combination with five phytohormone treatments, abscisic acid (ABA), indole‐3‐acetic acid (IAA), gibberellic acid (GA), jasmonic acid (JA) and kinetin, resulted in 324 000 precursor ions from 54 LC‐Orbitrap‐MS analyses quantified and aligned in a data matrix with the dimension of 6000 × 54 using the ProtMax algorithm. To dissect the phytohormone responses, multivariate principal/independent components analysis was performed. In total, 152 phosphopeptides were identified as differentially regulated; these phosphopeptides are involved in a wide variety of signaling pathways. New phosphorylation sites were identified for ABA response element binding factors that showed a specific increase in response to ABA. New phosphorylation sites were also found for RLKs and auxin transporters. We found that different hormones regulate distinct amino acid residues of members of the same protein families. In contrast, tyrosine phosphorylation of the Gα subunit appeared to be a common response for multiple hormones, demonstrating global cross‐talk among hormone signaling pathways.