Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Günnewich, N.; Higashi, Y.; Feng, X.; Choi, K.-B.; Schmidt, J.; Kutchan, T. M.;A diterpene synthase from the clary sage Salvia sclarea catalyzes the cyclization of geranylgeranyl diphosphate to (8R)-hydroxy-copalyl diphosphatePhytochemistry9193-99(2013)DOI: 10.1016/j.phytochem.2012.07.019
The bicyclic diterpene (−)-sclareol is accumulated in glandular trichomes in Salvia sclarea (Schmiderer et al., 2008), and is a major terpenoid component of this plant species. It is used as the starting material for Ambrox synthesis, a synthetic ambergris analog used in the flavor and fragrance industry. In order to investigate the formation of sclareol, cDNA prepared from secretory cells of glandular trichomes from S. sclarea inflorescence were randomly sequenced. A putative copalyl diphosphate synthase encoding EST, SscTPS1, was functionally expressed in Escherichia coli. Whereas reaction of geranylgeranyl diphosphate with the putative copalyl diphosphate synthase followed by hydrolysis with alkaline phosphatase yielded a diastereomeric mixture of (13R)- and (13S)-manoyl oxide, HCl hydrolysis yielded (−)-sclareol (1) and 13-epi-sclareol as products. The product of the reaction of SscTPS1 with geranylgeranyl diphosphate was subjected to analysis by LC-negative ion ESI-MS/MS without prior hydrolysis. EPI scans were consistent with copalyl diphosphate to which 18 mass units had added (m/z 467 [M+H]−). The enzymatic reaction was also carried out in the presence of 60% H218O. LC-negative ion ESI-MS/MS analysis established an additional reaction product consistent with the incorporation of 18O. Incubation in the presence of 60% 2H2O resulted in the incorporation of one deuterium atom. These results suggest water capture of the carbocation intermediate, which is known to occur in reactions catalyzed by monoterpene synthases, but has been described only several times for diterpene synthases.
Publikation
Kempe, K.; Higashi, Y.; Frick, S.; Sabarna, K.; Kutchan, T. M.;RNAi suppression of the morphine biosynthetic gene salAT and evidence of association of pathway enzymesPhytochemistry70579-589(2009)DOI: 10.1016/j.phytochem.2009.03.002
Papaver somniferum L. was transformed with an RNAi construct designed to reduce transcript levels of the gene encoding the morphine biosynthetic enzyme, salutaridinol 7-O-acetyltransferase (SalAT). RNA interference of salAT led to accumulation of the intermediate compounds, salutaridine and salutaridinol, in a ratio ranging from 2:1 to 56:1. Along the morphine biosynthetic pathway, salutaridine is stereospecifically reduced by salutaridine reductase (SalR) to salutaridinol, which is subsequently acetylated by SalAT. SalAT transcript was shown by quantitative PCR to be diminished, while salR transcript levels remained unaffected. Yeast two-hybrid and co-immunoprecipitation analyses indicated an interaction between SalR and SalAT, which suggested the occurrence of an enzyme complex and provided an explanation for the unexpected accumulation of salutaridine. Decreased concentrations of thebaine and codeine in latex were also observed, while the morphine levels remained constant compared to concentrations found in untransformed control plants.