Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Ricardo, M. G.; Llanes, D.; Rennert, R.; Jänicke, P.; Rivera, D. G.; Wessjohann, L. A.;Improved access to potent anticancer tubulysins and linker‐functionalized payloads via an all‐on‐resin strategyChem.-Eur. J.30e202401943(2024)DOI: 10.1002/chem.202401943
Tubulysins are among the most recent antimitotic compounds to enter into antibody/peptide‐drug conjugate (ADC/PDC) development. Thus far, the design of the most promising tubulysin payloads relied on simplifying their structures, e.g., by using small tertiary amide N‐substituents (Me, Et, Pr) on tubuvaline residue. Cumbersome solution‐phase approaches are typically used for both syntheses and functionalization with cleavable linkers. p‐Aminobenzyl quaternary ammonium (PABQ) linkers were a remarkable advancement for targeted delivery, but the procedures to incorporate them into tubulysins are only of moderate efficiency. Here we describe a novel all‐on‐resin strategy permitting a loss‐free resin linkage and an improved access to super potent tubulysin analogs showing close resemblance to the natural compounds. For the first time, a protocol enables the integration of on‐resin tubulysin derivatization with, e.g., a maleimido‐Val‐Cit‐PABQ linker, which is a notable progress for the payload‐PABQ‐linker technology. The strategy also allows tubulysin diversification of the internal amide N‐substituent, thus enabling to screen a tubulysin library for the discovery of new potent analogs. This work provides ADC/PDC developers with new tools for both rapid access to new derivatives and easier linker‐attachment and functionalization.
Publikation
Cankar, K.; Hakkert, J. C.; Sevenier, R.; Papastolopoulou, C.; Schipper, B.; Baixinho, J. P.; Fernández, N.; Matos, M. S.; Serra, A. T.; Santos, C. N.; Vahabi, K.; Tissier, A.; Bundock, P.; Bosch, D.;Lactucin synthase inactivation boosts the accumulation of anti-inflammatory 8-deoxylactucin and its derivatives in Chicory (Cichorium intybus L.)J. Agr. Food Chem.716061-6072(2023)DOI: 10.1021/acs.jafc.2c08959
For several sesquiterpene lactones (STLs) found in Asteraceae plants, very interesting biomedical activities have been demonstrated. Chicory roots accumulate the guaianolide STLs 8-deoxylactucin, lactucin, and lactucopicrin predominantly in oxalated forms in the latex. In this work, a supercritical fluid extract fraction of chicory STLs containing 8-deoxylactucin and 11β,13-dihydro-8-deoxylactucin was shown to have anti-inflammatory activity in an inflamed intestinal mucosa model. To increase the accumulation of these two compounds in chicory taproots, the lactucin synthase that takes 8-deoxylactucin as the substrate for the regiospecific hydroxylation to generate lactucin needs to be inactivated. Three candidate cytochrome P450 enzymes of the CYP71 clan were identified in chicory. Their targeted inactivation using the CRISPR/Cas9 approach identified CYP71DD33 to have lactucin synthase activity. The analysis of the terpene profile of the taproots of plants with edits in CYP71DD33 revealed a nearly complete elimination of the endogenous chicory STLs lactucin and lactucopicrin and their corresponding oxalates. Indeed, in the same lines, the interruption of biosynthesis resulted in a strong increase of 8-deoxylactucin and its derivatives. The enzyme activity of CYP71DD33 to convert 8-deoxylactucin to lactucin was additionally demonstrated in vitro using yeast microsome assays. The identified chicory lactucin synthase gene is predominantly expressed in the chicory latex, indicating that the late steps in the STL biosynthesis take place in the latex. This study contributes to further elucidation of the STL pathway in chicory and shows that root chicory can be positioned as a crop from which different health products can be extracted.
Publikation
Ricardo, M. G.; Schwark, M.; Llanes, D.; Niedermeyer, T. H. J.; Westermann, B.;Total synthesis of Aetokthonotoxin, the cyanobacterial neurotoxin causing vacuolar myelinopathyChem.-Eur. J.2712032-12035(2021)DOI: 10.1002/chem.202101848
Aetokthonotoxin has recently been identified as the cyanobacterial neurotoxin causing Vacuolar Myelinopathy, a fatal neurologic disease, spreading through a trophic cascade and affecting birds of prey such as the bald eagle in the USA. Here, we describe the total synthesis of this specialized metabolite. The complex, highly brominated 1,2’-biindole could be synthesized via a Somei-type Michael reaction as key step. The optimised sequence yielded the natural product in five steps with an overall yield of 29 %.
Publikation
Gorzolka, K.; Perino, E. H. B.; Lederer, S.; Smolka, U.; Rosahl, S.;Lysophosphatidylcholine 17:1 from the Leaf Surface of the Wild Potato Species Solanum bulbocastanum Inhibits Phytophthora infestansJ. Agr. Food Chem.695607-5617(2021)DOI: 10.1021/acs.jafc.0c07199
Late blight, caused by the oomycete Phytophthora infestans, is economically the most important foliar disease of potato. To assess the importance of the leaf surface, as the site of the first encounter of pathogen and host, we performed untargeted profiling by liquid chromatography–mass spectrometry of leaf surface metabolites of the susceptible cultivated potato Solanum tuberosum and the resistant wild potato species Solanum bulbocastanum. Hydroxycinnamic acid amides, typical phytoalexins of potato, were abundant on the surface of S. tuberosum, but not on S. bulbocastanum. One of the metabolites accumulating on the surface of the wild potato was identified as lysophosphatidylcholine carrying heptadecenoic acid, LPC17:1. In vitro assays revealed that both spore germination and mycelial growth of P. infestans were efficiently inhibited by LPC17:1, suggesting that leaf surface metabolites from wild potato species could contribute to early defense responses against P. infestans.