Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Hoehenwarter, W.; Ackermann, R.; Zimny-Arndt, U.; Kumar, N. M.; Jungblut, P. R.;The necessity of functional proteomics: protein species and molecular function elucidation exemplified by in vivo alpha A crystallin N-terminal truncationAmino Acids31317-323(2006)DOI: 10.1007/s00726-005-0377-4
Ten years after the establishment of the term proteome, the science surrounding it has yet to fulfill its potential. While a host of technologies have generated lists of protein names, there are only a few reported studies that have examined the individual proteins at the covalent chemical level defined as protein species in 1997 and their function. In the current study, we demonstrate that this is possible with two-dimensional gel electrophoresis (2-DE) and mass spectrometry by presenting clear evidence of in vivo N-terminal alpha A crystallin truncation and relating this newly detected protein species to alpha crystallin activity regulation by protease cleavage in the healthy young murine lens. We assess the present state of technology and suggest a shift in resources and paradigm for the routine attainment of the protein species level in proteomics.
The eye lens is a fascinating organ as it is in essence living transparent matter. Lenticular transparency is achieved through the peculiarities of lens morphology, a semi-apoptotic process where cells elongate and loose their organelles and the precise molecular arrangement of the bulk of soluble lenticular proteins, the crystallins. The 16 crystallins ubiquitous in mammals and their modifications have been extensively characterized by 2-DE, liquid chromatography, mass spectrometry and other protein analysis techniques. The various solubility dependant fractions as well as subproteomes of lenticular morphological sections have also been explored in detail. Extensive post translational modification of the crystallins is encountered throughout the lens as a result of ageing and disease resulting in a vast number of protein species. Proteomics methodology is therefore ideal to further comprehensive understanding of this organ and the factors involved in cataractogenesis.