Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Three previously undescribed azepino-indole alkaloids, named purpurascenines A−C (1−3), together with the new-to-nature 7-hydroxytryptophan (4) as well as two known compounds, adenosine (5) and riboflavin (6), were isolated from fruiting bodies of Cortinarius purpurascens Fr. (Cortinariaceae). The structures of 1−3 were elucidated based on spectroscopic analyses and ECD calculations. Furthermore, the biosynthesis of purpurascenine A (1) was investigated by in vivo experiments using 13C-labeled sodium pyruvate, alanine, and sodium acetate incubated with fruiting bodies of C. purpurascens. The incorporation of 13C into 1 was analyzed using 1D NMR and HRESIMS methods. With [3-13C]-pyruvate, a dramatic enrichment of 13C was observed, and hence a biosynthetic route via a direct Pictet−Spengler reaction between α-keto acids and 7-hydroxytryptophan (4) is suggested for the biosynthesis of purpurascenines A−C (1−3). Compound 1 exhibits no antiproliferative or cytotoxic effects against human prostate (PC-3), colorectal (HCT-116), and breast (MCF-7) cancer cells. An in silico docking study confirmed the hypothesis that purpurascenine A (1) could bind to the 5-HT2A serotonin receptor’s active site. A new functional 5-HT2A receptor activation assay showed no functional agonistic but some antagonistic effects of 1 against the 5-HT-dependent 5-HT2A activation and likely antagonistic effects on putative constitutive activity of the 5-HT2A receptor.
Publikation
Yadav, H.; Dreher, D.; Athmer, B.; Porzel, A.; Gavrin, A.; Baldermann, S.; Tissier, A.; Hause, B.;Medicago TERPENE SYNTHASE 10 Is Involved in Defense Against an Oomycete Root PathogenPlant Physiol.1801598-1613(2019)DOI: 10.1104/pp.19.00278
In nature, plants interact with numerous beneficial or pathogenic soil-borne microorganisms. Plants have developed various defense strategies to expel pathogenic microbes, some of which function soon after pathogen infection. We used Medicago truncatula and its oomycete pathogen Aphanomyces euteiches to elucidate early responses of the infected root. A. euteiches causes root rot disease in legumes and is a limiting factor in legume production. Transcript profiling of seedlings and adult plant roots inoculated with A. euteiches zoospores for 2 h revealed specific upregulation of a gene encoding a putative sesquiterpene synthase (M. truncatula TERPENE SYNTHASE 10 [MtTPS10]) in both developmental stages. MtTPS10 was specifically expressed in roots upon oomycete infection. Heterologous expression of MtTPS10 in yeast led to production of a blend of sesquiterpenes and sesquiterpene alcohols, with NMR identifying a major peak corresponding to himalachol. Moreover, plants carrying a tobacco (Nicotiana tabacum) retrotransposon Tnt1 insertion in MtTPS10 lacked the emission of sesquiterpenes upon A. euteiches infection, supporting the assumption that the identified gene encodes a multiproduct sesquiterpene synthase. Mttps10 plants and plants with reduced MtTPS10 transcript levels created by expression of an MtTPS10-artificial microRNA in roots were more susceptible to A. euteiches infection than were the corresponding wild-type plants and roots transformed with the empty vector, respectively. Sesquiterpenes produced by expression of MtTPS10 in yeast also inhibited mycelial growth and A. euteiches zoospore germination. These data suggest that sesquiterpene production in roots by MtTPS10 plays a previously unrecognized role in the defense response of M. truncatula against A. euteiches.
Publikation
Otto, A.; Porzel, A.; Schmidt, J.; Brandt, W.; Wessjohann, L.; Arnold, N.;Structure and Absolute Configuration of Pseudohygrophorones A12 and B12, Alkyl Cyclohexenone Derivatives from Hygrophorus abieticola (Basidiomycetes)J. Nat. Prod.7974-80(2016)DOI: 10.1021/acs.jnatprod.5b00675
Pseudohygrophorones A(12) (1) and B(12) (2), the first naturally occurring alkyl cyclohexenones from a fungal source, and the recently reported hygrophorone B(12) (3) have been isolated from fruiting bodies of the basidiomycete Hygrophorus abieticola Krieglst. ex Gröger & Bresinsky. Their structures were assigned on the basis of extensive one- and two-dimensional NMR spectroscopic analysis as well as ESI-HRMS measurements. The absolute configuration of the three stereogenic centers in the diastereomeric compounds 1 and 2 was established with the aid of (3)JH,H and (4)JH,H coupling constants, NOE interactions, and conformational analysis in conjunction with quantum chemical CD calculations. It was concluded that pseudohygrophorone A(12) (1) is 4S,5S,6S configured, while pseudohygrophorone B(12) (2) was identified as the C-6 epimer of 1, corresponding to the absolute configuration 4S,5S,6R. In addition, the mass spectrometric fragmentation behavior of 1-3 obtained by the higher energy collisional dissociation method allows a clear distinction between the pseudohygrophorones (1 and 2) and hygrophorone B(12) (3). The isolated compounds 1-3 exhibited pronounced activity against phytopathogenic organisms.
Publikation
Otto, A.; Laub, A.; Wendt, L.; Porzel, A.; Schmidt, J.; Palfner, G.; Becerra, J.; Krüger, D.; Stadler, M.; Wessjohann, L.; Westermann, B.; Arnold, N.;Chilenopeptins A and B, Peptaibols from the Chilean Sepedonium aff. chalcipori KSH 883J. Nat. Prod.79929-938(2016)DOI: 10.1021/acs.jnatprod.5b01018
The Chilean Sepedonium aff. chalcipori strain KSH 883, isolated from the endemic Boletus loyo Philippi, was studied in a polythetic approach based on chemical, molecular, and biological data. A taxonomic study of the strain using molecular data of the ITS, EF1-α, and RPB2 barcoding genes confirmed the position of the isolated strain within the S. chalcipori clade, but also suggested the separation of this clade into three different species. Two new linear 15-residue peptaibols, named chilenopeptins A (1) and B (2), together with the known peptaibols tylopeptins A (3) and B (4) were isolated from the semisolid culture of strain KSH 883. The structures of 1 and 2 were elucidated on the basis of HRESIMS(n) experiments in conjunction with comprehensive 1D and 2D NMR analysis. Thus, the sequence of chilenopeptin A (1) was identified as Ac-Aib(1)-Ser(2)-Trp(3)-Aib(4)-Pro(5)-Leu(6)-Aib(7)-Aib(8)-Gln(9)-Aib(10)-Aib(11)-Gln(12)-Aib(13)-Leu(14)-Pheol(15), while chilenopeptin B (2) differs from 1 by the replacement of Trp(3) by Phe(3). Additionally, the total synthesis of 1 and 2 was accomplished by a solid-phase approach, confirming the absolute configuration of all chiral amino acids as l. Both the chilenopeptins (1 and 2) and tylopeptins (3 and 4) were evaluated for their potential to inhibit the growth of phytopathogenic organisms.