Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Tannert, M.; May, A.; Ditfe, D.; Berger, S.; Balcke, G. U.; Tissier, A.; Köck, M.;Pi starvation-dependent regulation of ethanolamine metabolism by phosphoethanolamine phosphatase PECP1 in Arabidopsis rootsJ. Exp. Bot.69467-481(2018)DOI: 10.1093/jxb/erx408
A universal plant response to phosphorus deprivation is the up-regulation of a diverse array of phosphatases. As reported recently, the AtPECP1 gene encodes a phosphatase with in vitro substrate specificity for phosphoethanolamine and phosphocholine. The putative substrates suggested that AtPECP1 is related to phospholipid metabolism; however, the biological function of AtPECP1 is as yet not understood. In addition, whereas lipid remodelling processes as part of the phosphorus starvation response have been extensively studied, knowledge of the polar head group metabolism and its regulation is lacking. We found that AtPECP1 is expressed in the cytosol and exerts by far its strongest activity in roots of phosphate-starved plants. We established a novel LC-MS/MS-based method for the quantitative and simultaneous measurement of the head group metabolites. The analysis of Atpecp1 null mutants and overexpression lines revealed that phosphoethanolamine, but not phosphocholine is the substrate of AtPECP1 in vivo. The impact on head group metabolite levels is greatest in roots of both loss-of-function and gain-of-function transgenic lines, indicating that the biological role of AtPECP1 is mainly restricted to roots. We suggest that phosphoethanolamine hydrolysis by AtPECP1 during Pi starvation is required to down-regulate the energy-consuming biosynthesis of phosphocholine through the methylation pathway.
Publikation
Paudel, G.; Bilova, T.; Schmidt, R.; Greifenhagen, U.; Berger, R.; Tarakhovskaya, E.; Stöckhardt, S.; Balcke, G. U.; Humbeck, K.; Brandt, W.; Sinz, A.; Vogt, T.; Birkemeyer, C.; Wessjohann, L.; Frolov, A.;Osmotic stress is accompanied by protein glycation in Arabidopsis thalianaJ. Exp. Bot.676283-6295(2016)DOI: 10.1093/jxb/erw395
Among the environmental alterations accompanying oncoming climate changes, drought is the most important factor influencing crop plant productivity. In plants, water deficit ultimately results in the development of oxidative stress and accumulation of osmolytes (e.g. amino acids and carbohydrates) in all tissues. Up-regulation of sugar biosynthesis in parallel to the increasing overproduction of reactive oxygen species (ROS) might enhance protein glycation, i.e. interaction of carbonyl compounds, reducing sugars and α-dicarbonyls with lysyl and arginyl side-chains yielding early (Amadori and Heyns compounds) and advanced glycation end-products (AGEs). Although the constitutive plant protein glycation patterns were characterized recently, the effects of environmental stress on AGE formation are unknown so far. To fill this gap, we present here a comprehensive in-depth study of the changes in Arabidopsis thaliana advanced glycated proteome related to osmotic stress. A 3 d application of osmotic stress revealed 31 stress-specifically and 12 differentially AGE-modified proteins, representing altogether 56 advanced glycation sites. Based on proteomic and metabolomic results, in combination with biochemical, enzymatic and gene expression analysis, we propose monosaccharide autoxidation as the main stress-related glycation mechanism, and glyoxal as the major glycation agent in plants subjected to drought.