Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Hoffmann, S. M.; Weissenborn, M. J.; Gricman, ?.; Notonier, S.; Pleiss, J.; Hauer, B.;The Impact of Linker Length on P450 Fusion Constructs: Activity, Stability and CouplingChemCatChem81591-1597(2016)DOI: 10.1002/cctc.201501397
Three different reductases have been fused to CYP153 monooxygenase from Marinobacter aquaeolei. The most promising candidate has been analysed in terms of its linker part, which connects the reductase with the haem domain through sequence alignment of the corresponding reductase family CYP116B. To improve the artificial fusion construct, the linker length has been varied, thereby only altering the non‐conserved middle part of the linker. This way seven artificial fusion constructs have been engineered, which varied in linker length between 11 and 32 amino acids (“natural” is 16). These variations showed a substantial impact on the fusion construct. The best mutant, extended by two amino acids, showed an improved activity (67 %), higher stability (67 % more active haem domain after 2 h) and a coupling efficiency of 94 % (55 % higher than before). Presented in this paper is an approach to find and optimise artificial fusion constructs for P450 monooxygenases.
Publikation
Hoffmann, S. M.; Danesh-Azari, H.-R.; Spandolf, C.; Weissenborn, M. J.; Grogan, G.; Hauer, B.;Structure-Guided Redesign of CYP153AM.aq for the Improved Terminal Hydroxylation of Fatty AcidsChemCatChem83234-3239(2016)DOI: 10.1002/cctc.201600680
The structure of a P450 ω‐hydroxylase bound to its fatty acid product was determined, which revealed a narrow substrate tunnel that leads to the heme. The introduction of an arginine side chain in proximity to the carboxyl group of the fatty acid led to a reduced KM value for dodecanoic acid, which suggests the importance of an anchoring point in the active site. An increase in the flexibility of the substrate recognition region was also engineered, which resulted in a threefold improved product formation.