Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
SUMMARYWHIRLY1 belongs to a family of plant‐specific transcription factors capable of binding DNA or RNA in all three plant cell compartments that contain genetic materials. In Arabidopsis thaliana, WHIRLY1 has been studied at the later stages of plant development, including flowering and leaf senescence, as well as in biotic and abiotic stress responses. In this study, WHIRLY1 knockout mutants of A. thaliana were prepared by CRISPR/Cas9‐mediated genome editing to investigate the role of WHIRLY1 during early seedling development. The loss‐of‐function of WHIRLY1 in 5‐day‐old seedlings did not cause differences in the phenotype and the photosynthetic performance of the emerging cotyledons compared with the wild type. Nevertheless, comparative RNA sequencing analysis revealed that the knockout of WHIRLY1 affected the expression of a small but specific set of genes during this critical phase of development. About 110 genes were found to be significantly deregulated in the knockout mutant, wherein several genes involved in the early steps of aliphatic glucosinolate (GSL) biosynthesis were suppressed compared with wild‐type plants. The downregulation of these genes in WHIRLY1 knockout lines led to decreased GSL contents in seedlings and in seeds. Since GSL catabolism mediated by myrosinases was not altered during seed‐to‐seedling transition, the results suggest that AtWHIRLY1 plays a major role in modulation of aliphatic GSL biosynthesis during early seedling development. In addition, phylogenetic analysis revealed a coincidence between the evolution of methionine‐derived aliphatic GSLs and the addition of a new WHIRLY in core families of the plant order Brassicales.
Publikation
Pienkny, S.; Brandt, W.; Schmidt, J.; Kramell, R.; Ziegler, J.;Functional characterization of a novel benzylisoquinoline O-methyltransferase suggests its involvement in papaverine biosynthesis in opium poppy (Papaver somniferum L)Plant J.6056-67(2009)DOI: 10.1111/j.1365-313X.2009.03937.x
The benzylisoquinoline alkaloids are a highly diverse group of about 2500 compounds which accumulate in a species‐specific manner. Despite the numerous compounds which could be identified, the biosynthetic pathways and the participating enzymes or cDNAs could be characterized only for a few selected members, whereas the biosynthesis of the majority of the compounds is still largely unknown. In an attempt to characterize additional biosynthetic steps at the molecular level, integration of alkaloid and transcript profiling across Papaver species was performed. This analysis showed high expression of an expressed sequence tag (EST) of unknown function only in Papaver somniferum varieties. After full‐length cloning of the open reading frame and sequence analysis, this EST could be classified as a member of the class II type O ‐methyltransferase protein family. It was related to O ‐methyltransferases from benzylisoquinoline biosynthesis, and the amino acid sequence showed 68% identical residues to norcoclaurine 6‐O ‐methyltransferase. However, rather than methylating norcoclaurine, the recombinant protein methylated norreticuline at position seven with a K m of 44 μm using S ‐adenosyl‐l ‐methionine as a cofactor. Of all substrates tested, only norreticuline was converted. Even minor changes in the benzylisoquinoline backbone were not tolerated by the enzyme. Accordingly, the enzyme was named norreticuline 7–O ‐methyltransferase (N7OMT). This enzyme represents a novel O ‐methyltransferase in benzylisoquinoline metabolism. Expression analysis showed slightly increased expression of N7OMT in P. somniferum varieties containing papaverine, suggesting its involvement in the partially unknown biosynthesis of this pharmaceutically important compound.
Publikation
Liscombe, D. K.; Ziegler, J.; Schmidt, J.; Ammer, C.; Facchini, P. J.;Targeted metabolite and transcript profiling for elucidating enzyme function: isolation of novel N-methyltransferases from three benzylisoquinoline alkaloid-producing speciesPlant J.60729-743(2009)DOI: 10.1111/j.1365-313X.2009.03980.x
An integrated approach using targeted metabolite profiles and modest EST libraries each containing approximately 3500 unigenes was developed in order to discover and functionally characterize novel genes involved in plant‐specialized metabolism. EST databases have been established for benzylisoquinoline alkaloid‐producing cell cultures of Eschscholzia californica , Papaver bracteatum and Thalictrum flavum , and are a rich repository of alkaloid biosynthetic genes. ESI‐FTICR‐MS and ESI‐MS/MS analyses facilitated unambiguous identification and relative quantification of the alkaloids in each system. Manual integration of known and candidate biosynthetic genes in each EST library with benzylisoquinoline alkaloid biosynthetic networks assembled from empirical metabolite profiles allowed identification and functional characterization of four N‐ methyltransferases (NMTs). One cDNA from T. flavum encoded pavine N‐ methyltransferase (TfPavNMT), which showed a unique preference for (±)‐pavine and represents the first isolated enzyme involved in the pavine alkaloid branch pathway. Correlation of the occurrence of specific alkaloids, the complement of ESTs encoding known benzylisoquinoline alkaloid biosynthetic genes and the differential substrate range of characterized NMTs demonstrated the feasibility of bilaterally predicting enzyme function and species‐dependent specialized metabolite profiles.
Publikation
Ziegler, J.; Voigtländer, S.; Schmidt, J.; Kramell, R.; Miersch, O.; Ammer, C.; Gesell, A.; Kutchan, T. M.;Comparative transcript and alkaloid profiling in Papaver species identifies a short chain dehydrogenase/reductase involved in morphine biosynthesisPlant J.48177-192(2006)DOI: 10.1111/j.1365-313X.2006.02860.x
Plants of the order Ranunculales, especially members of the species Papaver , accumulate a large variety of benzylisoquinoline alkaloids with about 2500 structures, but only the opium poppy (Papaver somniferum ) and Papaver setigerum are able to produce the analgesic and narcotic morphine and the antitussive codeine. In this study, we investigated the molecular basis for this exceptional biosynthetic capability by comparison of alkaloid profiles with gene expression profiles between 16 different Papaver species. Out of 2000 expressed sequence tags obtained from P. somniferum , 69 show increased expression in morphinan alkaloid‐containing species. One of these cDNAs, exhibiting an expression pattern very similar to previously isolated cDNAs coding for enzymes in benzylisoquinoline biosynthesis, showed the highest amino acid identity to reductases in menthol biosynthesis. After overexpression, the protein encoded by this cDNA reduced the keto group of salutaridine yielding salutaridinol, an intermediate in morphine biosynthesis. The stereoisomer 7‐epi ‐salutaridinol was not formed. Based on its similarities to a previously purified protein from P. somniferum with respect to the high substrate specificity, molecular mass and kinetic data, the recombinant protein was identified as salutaridine reductase (SalR; EC 1.1.1.248). Unlike codeinone reductase, an enzyme acting later in the pathway that catalyses the reduction of a keto group and which belongs to the family of the aldo‐keto reductases, the cDNA identified in this study as SalR belongs to the family of short chain dehydrogenases/reductases and is related to reductases in monoterpene metabolism.