Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Ortmann, S.; Marx, J.; Lampe, C.; Handrick, V.; Ehnert, T.-M.; Zinecker, S.; Reimers, M.; Bonas, U.; Lee Erickson, J.;A conserved microtubule-binding region in Xanthomonas XopL is indispensable for induced plant cell death reactionsPLOS Pathog.19e1011263(2023)DOI: 10.1371/journal.ppat.1011263
Pathogenic Xanthomonas bacteria cause disease on more than 400 plant species. These Gram-negative bacteria utilize the type III secretion system to inject type III effector proteins (T3Es) directly into the plant cell cytosol where they can manipulate plant pathways to promote virulence. The host range of a given Xanthomonas species is limited, and T3E repertoires are specialized during interactions with specific plant species. Some effectors, however, are retained across most strains, such as Xanthomonas Outer Protein L (XopL). As an ‘ancestral’ effector, XopL contributes to the virulence of multiple xanthomonads, infecting diverse plant species. XopL homologs harbor a combination of a leucine-rich-repeat (LRR) domain and an XL-box which has E3 ligase activity. Despite similar domain structure there is evidence to suggest that XopL function has diverged, exemplified by the finding that XopLs expressed in plants often display bacterial species-dependent differences in their sub-cellular localization and plant cell death reactions. We found that XopL from X. euvesicatoria (XopLXe) directly associates with plant microtubules (MTs) and causes strong cell death in agroinfection assays in N. benthamiana. Localization of XopLXe homologs from three additional Xanthomonas species, of diverse infection strategy and plant host, revealed that the distantly related X. campestris pv. campestris harbors a XopL (XopLXcc) that fails to localize to MTs and to cause plant cell death. Comparative sequence analyses of MT-binding XopLs and XopLXcc identified a proline-rich-region (PRR)/α-helical region important for MT localization. Functional analyses of XopLXe truncations and amino acid exchanges within the PRR suggest that MT-localized XopL activity is required for plant cell death reactions. This study exemplifies how the study of a T3E within the context of a genus rather than a single species can shed light on how effector localization is linked to biochemical activity.
Publikation
Ruttkies, C.; Schymanski, E. L.; Strehmel, N.; Hollender, J.; Neumann, S.; Williams, A. J.; Krauss, M.;Supporting non-target identification by adding hydrogen deuterium exchange MS/MS capabilities to MetFragAnal. Bioanal. Chem.4114683-4700(2019)DOI: 10.1007/s00216-019-01885-0
Liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) is increasingly popular for the non-targeted exploration of complex samples, where tandem mass spectrometry (MS/MS) is used to characterize the structure of unknown compounds. However, mass spectra do not always contain sufficient information to unequivocally identify the correct structure. This study investigated how much additional information can be gained using hydrogen deuterium exchange (HDX) experiments. The exchange of “easily exchangeable” hydrogen atoms (connected to heteroatoms), with predominantly [M+D]+ ions in positive mode and [M-D]− in negative mode was observed. To enable high-throughput processing, new scoring terms were incorporated into the in silico fragmenter MetFrag. These were initially developed on small datasets and then tested on 762 compounds of environmental interest. Pairs of spectra (normal and deuterated) were found for 593 of these substances (506 positive mode, 155 negative mode spectra). The new scoring terms resulted in 29 additional correct identifications (78 vs 49) for positive mode and an increase in top 10 rankings from 80 to 106 in negative mode. Compounds with dual functionality (polar head group, long apolar tail) exhibited dramatic retention time (RT) shifts of up to several minutes, compared with an average 0.04 min RT shift. For a smaller dataset of 80 metabolites, top 10 rankings improved from 13 to 24 (positive mode, 57 spectra) and from 14 to 31 (negative mode, 63 spectra) when including HDX information. The results of standard measurements were confirmed using targets and tentatively identified surfactant species in an environmental sample collected from the river Danube near Novi Sad (Serbia). The changes to MetFrag have been integrated into the command line version available at http://c-ruttkies.github.io/MetFrag and all resulting spectra and compounds are available in online resources and in the Electronic Supplementary Material (ESM).
Publikation
Ried, M. K.; Banhara, A.; Hwu, F.-Y.; Binder, A.; Gust, A. A.; Höfle, C.; Hückelhoven, R.; Nürnberger, T.; Parniske, M.;A set of Arabidopsis genes involved in the accommodation of the downy mildew pathogen Hyaloperonospora arabidopsidisPLOS Pathog.15e1007747(2019)DOI: 10.1371/journal.ppat.1007747
The intracellular accommodation structures formed by plant cells to host arbuscular mycorrhiza fungi and biotrophic hyphal pathogens are cytologically similar. Therefore we investigated whether these interactions build on an overlapping genetic framework. In legumes, the malectin-like domain leucine-rich repeat receptor kinase SYMRK, the cation channel POLLUX and members of the nuclear pore NUP107-160 subcomplex are essential for symbiotic signal transduction and arbuscular mycorrhiza development. We identified members of these three groups in Arabidopsis thaliana and explored their impact on the interaction with the oomycete downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa). We report that mutations in the corresponding genes reduced the reproductive success of Hpa as determined by sporangiophore and spore counts. We discovered that a developmental transition of haustorial shape occurred significantly earlier and at higher frequency in the mutants. Analysis of the multiplication of extracellular bacterial pathogens, Hpa-induced cell death or callose accumulation, as well as Hpa- or flg22-induced defence marker gene expression, did not reveal any traces of constitutive or exacerbated defence responses. These findings point towards an overlap between the plant genetic toolboxes involved in the interaction with biotrophic intracellular hyphal symbionts and pathogens in terms of the gene families involved.
Publikation
Tessema, E. N.; Gebre-Mariam, T.; Frolov, A.; Wohlrab, J.; Neubert, R. H. H.;Development and validation of LC/APCI-MS method for the quantification of oat ceramides in skin permeation studiesAnal. Bioanal. Chem.4104775-4785(2018)DOI: 10.1007/s00216-018-1162-z
Ceramides (CERs) are the backbone of the intercellular lipid lamellae of the stratum corneum (SC), the outer layer of the skin. Skin diseases such as atopic dermatitis, psoriasis, and aged skin are characterized by dysfunctional skin barrier and dryness which are associated with reduced levels of CERs. Replenishing the depleted epidermal CERs with exogenous CERs has been shown to have beneficial effects in improving the skin barrier and hydration. The exogenous CERs such as phyto-derived CERs (PhytoCERs) can be delivered deep into the SC using novel topical formulations. This, however, requires investigating the rate and extent of skin permeation of CERs. In this study, an LC/APCI-MS method to detect and quantify PhytoCERs in different layers of the skin has been developed and validated. The method was used to investigate the skin permeation of PhytoCERs using Franz diffusion cells after applying an amphiphilic cream containing PhytoCERs to the surface of ex vivo human skin. As plant-specific CERs are not commercially available, well-characterized CERs isolated from oat (Avena abyssinica) were used as reference standards for the development and validation of the method. The method was linear over the range of 30–1050 ng/mL and sensitive with limit of detection and quantification of 10 and 30 ng/mL, respectively. The method was also selective, accurate, and precise with minimal matrix effect (with mean matrix factor around 100%). Even if more than 85% of oat CERs in the cream remained in the cream after the incubation periods of 30, 100, and 300 min, it was possible to quantify the small quantities of oat CERs distributed across the SC, epidermis, and dermis of the skin indicating the method’s sensitivity. Therefore, the method can be used to investigate the skin permeation of oat CERs from the various pharmaceutical and cosmeceutical products without any interference from the skin constituents such as the epidermal lipids.